[1]李微,乔俊飞,韩红桂,等.模糊规则相似性计算与性能分析研究[J].智能系统学报,2017,12(1):124-131.[doi:10.11992/tis.201512040]
LI Wei,QIAO Junfei,HAN Honggui,et al.Computing and performance analysis of similarity between fuzzy rules[J].CAAI Transactions on Intelligent Systems,2017,12(1):124-131.[doi:10.11992/tis.201512040]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
12
期数:
2017年第1期
页码:
124-131
栏目:
学术论文—机器学习
出版日期:
2017-02-25
- Title:
-
Computing and performance analysis of similarity between fuzzy rules
- 作者:
-
李微1,2, 乔俊飞1,2, 韩红桂1,2, 曾晓军3
-
1. 北京工业大学 信息学部, 北京 100124;
2. 计算智能与智能系统北京市重点实验室, 北京 100124;
3. 曼彻斯特大学 计算机科学学院, 曼彻斯特 M13 9PL
- Author(s):
-
LI Wei1,2, QIAO Junfei1,2, HAN Honggui1,2, ZENG Xiaojun3
-
1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China;
2. Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, China;
3. School of Computer Science, the University of Manchester, Manchester M13 9PL, UK
-
- 关键词:
-
模糊规则; 相似性计算; 可区分性; 维度依赖性; 计算复杂性
- Keywords:
-
fuzzy rules; similarity computing; distinguishability; dimension dependency; computing complexity
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.201512040
- 摘要:
-
针对模糊规则相似性分析和计算问题,本文对模糊规则相似性计算方法进行了研究。首先,将模糊规则相似性等价地转化为多变量模糊集相似性,并对模糊规则相似性计算方法提出3种应用性能评价指标——可区分性、维数依赖性和计算复杂性。其次,在现有两种模糊规则相似性计算方法的基础上,提出4种新的计算方法,对各种方法进行系统地性能分析和比较。最后,对模糊规则相似性计算进行仿真研究,结果表明了所提应用性能指标的有效性、计算方法的可行性及分析结果的正确性。本文研究结果为模糊规则相似性分析和计算提供了依据,尤其为基于模糊规则相似性辨识和合并的模糊系统与模糊神经网络结构简化奠定了基础,提供了一种新的设计思路。
- Abstract:
-
Facing the weaknesses of the existing analysis and computing methods for the similarity between fuzzy rules (FRs), this paper investigated the computing methods for the similarity between FRs. First, the similarity between FSs was transferred equivalently into the similarity between multivariable fuzzy sets, and then three application based performance criterions-distinguishability, dimension dependency, and computing complexity were proposed to evaluate the computing methods of the similarity between FRs. Second, four new methods were proposed based on the two existing methods for computing the similarity between FRs, and then the performance analysis and comparison between these new and existing methods were performed. Next, a simulation example for the similarity computing between FRs was provided, and the simulation shows effectiveness of the proposed performance criteria, feasibility of the computing methods, and correctness of the analysis conclusions. The results obtained in this paper provide powerful tools and guides for the similarity analysis and computing of FRs. Inparticular, they establish the methodological foundation and provide a new design approach for the merging of similar FRs in the structure simplification of fuzzy systems and fuzzy neural networks.
备注/Memo
收稿日期:2015-12-22;改回日期:。
基金项目:国家自然科学基金项目(6162200417,61533002,61225016);中国博士后科学基金项目(2014M550017);北京市教育委员会科研计划项目(KZ201410005002,km201410005001);高等学校博士学科点专项科研基金项目(20131103110016).
作者简介:李微,女,1985年生,博士研究生,主要研究方向为智能信息处理;乔俊飞,男,1968年生,教授,博士生导师,中国人工智能学会科普工作委员会主任,主要研究方向为智能信息处理、智能控制理论与应用。获教育部科技进步奖一等奖和北京市科学技术奖三等奖各1项。发表学术论文100余篇,被SCI检索20余篇,EI检索60余篇;韩红桂,男,1983年生,教授,博士生导师,主要研究方向为智能特征建模、自组织模糊控制和多目标智能优化。发表学术论文60余篇。
通讯作者:乔俊飞.E-mail:isibox@sina.com.
更新日期/Last Update:
1900-01-01