[1]淦文燕,刘冲.一种改进的搜索密度峰值的聚类算法[J].智能系统学报,2017,12(2):229-235.[doi:10.11992/tis.201512036]
GAN Wenyan,LIU Chong.An improved clustering algorithm that searches and finds density peaks[J].CAAI Transactions on Intelligent Systems,2017,12(2):229-235.[doi:10.11992/tis.201512036]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
12
期数:
2017年第2期
页码:
229-235
栏目:
学术论文—机器学习
出版日期:
2017-05-05
- Title:
-
An improved clustering algorithm that searches and finds density peaks
- 作者:
-
淦文燕, 刘冲
-
解放军理工大学 指挥信息系统学院, 江苏 南京 210007
- Author(s):
-
GAN Wenyan, LIU Chong
-
College of Command Information System, PLA University of Science and Technology, Nanjing 210007, China
-
- 关键词:
-
数据挖掘; 聚类算法; 核密度估计; 熵
- Keywords:
-
data mining; clustering algorithms; kernel density estimation; entropy
- 分类号:
-
TP311
- DOI:
-
10.11992/tis.201512036
- 摘要:
-
聚类是大数据分析与数据挖掘的基础问题。刊登在2014年《Science》杂志上的文章《Clustering by fast search and find of density peaks》提出一种快速搜索密度峰值的聚类算法,算法简单实用,但聚类结果依赖于参数dc的经验选择。论文提出一种改进的搜索密度峰值的聚类算法,引入密度估计熵自适应优化算法参数。对比实验结果表明,改进方法不仅可以较好地解决原算法的参数人为确定的不足,而且具有相对更好的聚类性能。
- Abstract:
-
Clustering is a fundamental issue for big data analysis and data mining. In July 2014, a paper in the Journal of Science proposed a simple yet effective clustering algorithm based on the idea that cluster centers are characterized by a higher density than their neighbors and having a relatively large distance from points with higher densities. The proposed algorithm can detect clusters of arbitrary shapes and differing densities but is very sensitive to tunable parameter dc. In this paper, we propose an improved clustering algorithm that adaptively optimizes parameter dc. The time complexity of our algorithm was super-linear with respect to the size of the dataset. Further, our theoretical analysis and experimental results show the effectiveness and efficiency of our improved algorithm.
备注/Memo
收稿日期:2015-12-31;改回日期:。
基金项目:国家自然科学基金项目(60974086).
作者简介:淦文燕,女,副教授。主要研究方向为人工智能,数据挖掘,机器学习;刘冲,男,硕士研究生,主要研究方向为大数据分析,数据挖掘。
通讯作者:刘冲. E-mail:lc1368542460@126.com.
更新日期/Last Update:
1900-01-01