[1]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567-577.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11(5):567-577.[doi:10.11992/tis.201511028]
点击复制

深度学习方法研究新进展

参考文献/References:
[1] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
[2] 林妙真. 基于深度学习的人脸识别研究[D]. 大连:大连理工大学, 2013. LIN Miaozhen. Research on face recognition based on deep learning[D]. Dalian, China:Dalian University of Technology, 2013.
[3] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[4] 刘建伟, 刘媛, 罗雄麟. 深度学习研究进展[J]. 计算机应用研究, 2014, 31(7):1921-1930, 1942. LIU Jianwei, LIU Yuan, LUO Xionglin. Research and development on deep learning[J]. Application research of computers, 2014, 31(7):1921-1930, 1942.
[5] 余滨, 李绍滋, 徐素霞, 等. 深度学习:开启大数据时代的钥匙[J]. 工程研究-跨学科视野中的工程, 2014, 6(3):233-243. YU Bin, LI Shaozi, XU Suxia, et al. Deep learning:a key of stepping into the era of big data[J]. Journal of engineering studies, 2014, 6(3):233-243.
[6] 尹宝才, 王文通, 王立春. 深度学习研究综述[J]. 北京工业大学学报, 2015, 41(1):48-59. YIN Biaocai, WANG Wentong, WANG Lichun. Review of deep learning[J]. Journal of Beijing university of technology, 2015, 41(1):48-59.
[7] 张建明, 詹智财, 成科扬, 等. 深度学习的研究与发展[J]. 江苏大学学报:自然科学版, 2015, 36(2):191-200. ZHANG Jianming, ZHAN Zhicai, CHENG Keyang, et al. Review on development of deep learning[J]. Journal of Jiangsu university:natural science editions, 2015, 36(2):191-200.
[8] LECUN Y, JACKEL L D, BOTTOU L, et al. Learning algorithms for classification:a comparison on handwritten digit recognition[M]//OH J H, KWON C, CHO S. Neural Networks:The Statistical Mechanics Perspective. Singapore:World Scientific, 1995:261-276.
[9] 陈先昌. 基于卷积神经网络的深度学习算法与应用研究[D]. 杭州:浙江工商大学, 2014. CHEN Xianchang. Research on algorithm and application of deep learning based on convolutional neural network[D]. Hangzhou, China:Zhejiang Gongshang University, 2014.
[10] 李卫. 深度学习在图像识别中的研究及应用[D]. 武汉:武汉理工大学, 2014. LI Wei. The research and application of deep learning in image recognition[D]. Wuhan:Wuhan University of Technology, 2014.
[11] JI Shuiwang, XU Wei, YANG Ming, et al. 3D convolutional neural networks for human action recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(1):221-231.
[12] BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[EB/OL].Eprint Arxiv:Arxiv,2013.[2014-10-10] http://120.52.73.79/arxiv.org/pdf/1312.6203v3.pdf.
[13] FAN Haoqiang, CAO Zhimin, JIANG Yuning, et al. Learning deep face representation[EB/OL]. Eprint Arxiv:Arxiv, 2014.[2014-10-10] http://120.52.73.80/arxiv.org/pdf/1403.2802v1.pdf.
[14] 王冠皓, 徐军. 基于多级金字塔卷积神经网络的快速特征表示方法[J]. 计算机应用研究, 2015, 32(8):2492-2495. WANG Guanhao, XU Jun. Fast feature representation method based on multi-level pyramid convolution neural network[J]. Application research of computers, 2015, 32(8):2492-2495.
[15] LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[C]//Proceedings of the 26th Annual International Conference on Machine Learning. New York, NY, USA, 2009:609-616.
[16] LEE H, EKANADHAM C, NG A Y. Sparse deep belief net model for visual area V2[C]//Advances in Neural Information Processing Systems 20:21st Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada, 2007:873-880.
[17] 罗恒. 基于协同过滤视角的受限玻尔兹曼机研究[D]. 上海:上海交通大学, 2011. LUO Heng. Restricted Boltzmann machines:a collaborative filtering perspective[D]. Shanghai, China:Shanghai Jiao Tong University, 2011.
[18] LAROCHELLE H, BENGIO Y. Classification using discriminative restricted Boltzmann machines[C]//Proceedings of the 25th International Conference on Machine Learning. New York, NY, USA, 2008:536-543.
[19] 张春霞, 姬楠楠, 王冠伟. 受限波尔兹曼机[J]. 工程数学学报, 2015, 32(2):159-173. ZHANG Chunxia, JI Nannan, WANG Guanwei. Restricted Boltzmann machines[J]. Chinese journal of engineering mathematics, 2015, 32(2):159-173.
[20] 刘银华. LBP和深度信念网络在非限制条件下人脸识别研究[D]. 江门:五邑大学, 2014. LIU Yinhua. The research of face recognition under unconstrained condition via LBP and deep belief network[D]. Jiangmen:Wuyi University, 2014.
[21] LEE H, GROSSE R, RANGANATH R, et al. Unsupervised learning of hierarchical representations with convolutional deep belief networks[J]. Communications of the ACM, 2011, 54(10):95-103.
[22] HALKIAS X C, PARIS S, GLOTIN H. Sparse penalty in deep belief networks:using the mixed norm constraint[EB/OL].[2014-05-08]. http://arxiv.org/pdf/1301.3533.pdf.
[23] LIU Yan, ZHOU Shusen, CHEN Qingcai. Discriminative deep belief networks for visual data classification[J]. Pattern recognition, 2011, 44(10/11):2287-2296.
[24] 郑胤, 陈权崎, 章毓晋. 深度学习及其在目标和行为识别中的新进展[J]. 中国图象图形学报, 2014, 19(2):175-184. ZHENG Yin, CHEN Quanqi, ZHANG Yujin. Deep learning and its new progress in object and behavior recognition[J]. Journal of image and graphics, 2014, 19(2):175-184.
[25] VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning. New York, NY, USA, 2008:1096-1103.
[26] BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[C]//Advances in Neural Information Processing Systems 19:20th Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada, 2006:153-160.
[27] RIFAI S, VINCENT P, MULLER X, et al. Contractive auto-encoders:explicit invariance during feature extraction[C]//Proceedings of the 28th International Conference on Machine Learning. Bellevue, WA, USA, 2011.
[28] MASCI J, MEIER U, CIRE?AN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[C]//Proceedings of the 21st International Conference on Artificial Neural Networks, Part I. Berlin Heidelberg, Germany, 2011:52-59.
[29] 王雅思. 深度学习中的自编码器的表达能力研究[D]. 哈尔滨:哈尔滨工业大学, 2014. WANG Yasi. Representation ability research of auto-encoders in deep learning[D]. Harbin:Harbin Institute of Technology, 2014.
[30] 李远豪. 基于深度自编码器的人脸美丽吸引力预测研究[D]. 江门:五邑大学, 2014. LI Yuanhao. A study for facial beauty attractiveness prediction based on deep autoencoder[D]. Jiangmen:Wuyi University, 2014.
[31] 林洲汉. 基于自动编码机的高光谱图像特征提取及分类方法研究[D]. 哈尔滨:哈尔滨工业大学, 2014. LIN Zhouhan. Hyperspectral image feature extraction and classification based on autoencoders[D]. Harbin:Harbin Institute of Technology, 2014.
[32] 曲建岭, 杜辰飞, 邸亚洲, 等. 深度自动编码器的研究与展望[J]. 计算机与现代化, 2014(8):128-134. QU Jianling, DU Chenfei, DI Yazhou, et al. Research and prospect of deep auto-encoders[J]. Jisuanji yu xiandaihua, 2014(8):128-134.
[33] 林少飞, 盛惠兴, 李庆武. 基于堆叠稀疏自动编码器的手写数字分类[J]. 微处理机, 2015(1):47-51. LIN Shaofei, SHENG Huixing, LI Qingwu. Handwritten digital classification based on the stacked sparse autoencoders[J]. Microprocessors, 2015(1):47-51.
[34] 陈硕. 深度学习神经网络在语音识别中的应用研究[D]. 广州:华南理工大学, 2013. CHEN Shuo. Research of deep learning neural networks applications in speech recognition[D]. Guangzhou, China:South China University of Technology, 2013.
[35] 郭丽丽, 丁世飞. 深度学习研究进展[J]. 计算机科学, 2015, 42(5):28-33. GOU Lili, DING Shifei. Research progress on deep learning[J]. Computer science, 2015, 42(5):28-33.
[36] VAN DEN OORD A, DIELEMAN S, SCHRAUWEN B. Deep content-based music recommendation[M]//Advances in Neural Information Processing Systems 26:27th Annual Conference on Neural Information Processing Systems. Lake Tahoe, 2013:2643-2651.
[37] HANNUN A, CASE C, CASPER J, et al. Deep speech:scaling up end-to-end speech recognition[EB/OL]. Eprint Arxiv:Arxiv, 2014.[2014-12-19] https://arxiv.org/pdf/1412.5567v2.pdf.
[38] 余凯, 贾磊, 陈雨强. 深度学习的昨天、今天和明天[J]. 计算机研究与发展, 2013, 50(9):1799-1804. YU Kai, JIA Lei, CHEN Yuqiang. Deep learning:yesterday, today, and tomorrow[J]. Journal of computer research and development, 2013, 50(9):1799-1804.
[39] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, 2014:580-587.
[40] TAIGMAN Y, YANG Ming, RANZATO M A, et al. DeepFace:closing the gap to human-level performance in face verification[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, 2014:1701-1708.
[41] TOSHEV A, SZEGEdY C. DeepPose:human pose estimation via deep neural networks[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, 2014:1653-1660.
[42] DIELEMAN S. Classifying plankton with deep neural networks[EB/OL]. (2015-03-17)[2015-05-30]. http://benanne.github.io/2015/03/17/plankton.html.
[43] DENTON E, WESTON J, PALURI M, et al. User conditional hashtag prediction for images[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA, 2015:1731-1740.
[44] LONG J, SHELHAMER E, DARRELL T Fully convolutional networks for semantic segmentation[J]. IEEE Conference on Computer Vision & Pattern Recognition. 2015, 79(10):1337-1342.
[45] SCHWARA M, SCHULZ H, BEHNKE S. RGB-D object recognition and pose estimation based on pre-trained convolutional neural network features[C]//Proceedings of the 2015IEEE International Conference on Robotics and Automation.Seattle, WA, 2015:1329-1335.
[46] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet:A unified embedding for face recognition and clustering[C]//Computer Vision and Pattern Recognition (CVPR), Boston,USA,2015:815-823.
[47] SARFRAZ M S, STIEFELHAGEN R. Deep perceptual mapping for thermal to visible face recognition.[EB/OL] Eprint Arxiv:Arxiv,2015.[2015-12-23].http://120.52.73.80/arxiv.org/pdf/1507.02879v1.pdf.
[48] LIU Mengyi, LI Shaoxin, SHAN Shiguang, et al. Au-aware deep networks for facial expression recognition[C]//Proceedings of the 201310th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Shanghai, China, 2013:1-6.
[49] OUELLET S. Real-time emotion recognition for gaming using deep convolutional network features[EB/OL]. Eprint Arxiv:Arxiv,2014.[2014-7-16].https://arxiv.org/pdf/1408.3750v1.pdf.
[50] SONG I, KIM H J, JEON P B. Deep learning for real-time robust facial expression recognition on a smartphone[C]//Proceedings of the 2014 IEEE International Conference on Consumer Electronics. Las Vegas, NV, 2014:564-567.
[51] IJJINA E P, MOHAN C K. Facial expression recognition using kinect depth sensor and convolutional neural networks[C]//Proceedings of the 201413th International Conference on Machine Learning and Applications. Detroit, MI, 2014:392-396.
[52] BYEON Y H, KWAK K C. Facial expression recognition using 3D convolutional neural network[J]. International journal of advanced computer science and applications, 2014, 5(12):107-112.
[53] JUNG H, LEE S, PARK S, et al. Development of deep learning-based facial expression recognition system[C]//Frontiers of Computer Vision (FCV), 201521st Korea-Japan Joint Workshop on 2015:1-4.
[54] MCLAUGHLIN T, MAI L, BAYANBAT N. Emotionrecognition with deep-belief networks[EB/OL].2008 http://cs229.stanford.edu/proj2010/McLaughlinLeBayanbat-RecognizingEmotionsWithDeepBeliefNets.pdf.
[55] HE Shan, WANG Shanfei, LAN Wuwei, et al. Facial expression recognition using deep Boltzmann machine from thermal infrared images[C]//Proceedings of the 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. Geneva, 2013:239-244.
[56] LV Yadan, FENG Zhiyong, XU Chao. Facial expression recognition via deep learning[C]//Proceedings of the 2014 International Conference on Smart Computing. Hong Kong, China, 2014:303-308.
[57] JUNG H, LEE S, PARK S, et al. Deep temporal appearance-geometry network for facial expression recognition[EB/OL].Eprint Arxiv:Arxiv,2015.[2015-6-5].http://120.52.73.75/arxiv.org/pdf/1503.01532v1.pdf.
[58] KAHOU S E, BOUTHILLIER X, LAMBLIN P et al. EmoNets:Multimodal deep learning approaches for emotion recognition in video[J]. Journal on Multimodal User Interfaces, 2015, 10(2):1-13.
[59] SASHIHITHLU S, SOMAN S S. Complex sentimentanalysis using recursive autoencoders[EB/OL]. Core.ac.Uk:CiteSeerX,2013.[2015-9-30].https://core.ac.uk/display/23426251.
[60] JOHNSON R, ZHANG Tong. Effective use of word order for text categorization with convolutional neural networks[EB/OL]. Eprint Arxiv:Arxiv,2014.[2014-10-10]. http://120.52.73.79/arxiv.org/pdf/1412.1058.pdf.
[61] 李婷. 基于深度学习的盲文识别方法[J]. 计算机与现代化, 2015(6):37-40. LI Ting. A deep learing method for braille recognition[J].Jisuanji yu xiandaihua, 2015(6):37-40.
[62] KOZIOL J A, TAN E M, DAI Liping, et al. Restricted Boltzmann machines for classification of hepatocellular carcinoma[J]. Computational biology journal, 2014, 2014:418069.
[63] FAUW J D. Detecting diabetic retinopathy in eye images[EB/OL]. 2015[2015-07-28]. http://jeffreydf.github.io/diabetic-retinopathy-detection.
[64] CUN Y L, BOSER B, DENKER J S, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems 2. San Francisco, CA, USA, 1990:396-404.
[65] JI Shuiwang, XU Wei, YANG Ming, et al. 3D convolutional neural networks for human action recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(1):22l-231.
[66] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7):1527-1554.
[67] SALAKHUTDINOV R, HINTON G E. Deep Boltzmann machines[C]//Proceedings of the 12th International Conference on Artificial Intelligence and Statistics. Clearwater, Florida, USA, 2009:448-455.
[68] 杜骞. 深度学习在图像语义分类中的应用[D]. 武汉:华中师范大学, 2014. DU Qian. Application of deep learning in image semantic classification[D]. Wuhan:Central China Normal University, 2014.
[69] BENGIO Y. Learning deep architectures for AI[J]. Foundations and trendse in machine learning, 2009, 2(1):1-127.
[70] HINTON G E, SEJNOWSKI T J. Learning and relearning in Boltzmann machines[M]//Parallel Distributed Processing:Explorations in the Microstructure of Cognition. Cambridge, MA, USA:MIT Press, 1986.
[71] SMOLENSKY P. Information processing in dynamical systems:foundations of harmony theory[M]//Parallel Distributed Processing:Explorations in the Microstructure of Cognition. Cambridge, MA, USA:MIT Press, 1986.
[72] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088):533-536.
[73] MIKOLOV T, KARAFIáT M, BURGET L, et al. Recurrent neural network based language model[C]//Proceedings of the Interspeech 201011th Annual Conference of the International Speech Communication Association. Makuhari, Chiba, Japan, 2010:1045-1048.
[74] DENG Li, YU Dong. Deep convex net:a scalable architecture for speech pattern classification[C]//Proceedings of the 12th Annual Conference of the International Speech Communication Association. Florence, Italy, 2011:2296-2299.
[75] MIKOLOV T, KOMBRINK S, BURGET L. Extensions of recurrent neural network language model[C]//Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing.Prague, 2011:5528-5531.
[76] LIU Shujie, YANG Nan, LI Mu, et al. A recursive recurrent neural network for statistical machine translation[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, Maryland, USA, 2014:1491-1500.
[77] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[EB/OL]. 2014.[2014-10-12].http://120.52.73.79/arxiv.org/pdf/1409.3215v3.pdf.
[78] GRAVES A, MOHAMED A R, HINTON G. Speech recognition with deep recurrent neural networks[C]//Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, BC, 2013:6645-6649.
[79] SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al.Intriguing properties of neural networks[EB/OL]. Eprint Arxiv:Arxiv,2014.[2014-10-12]. http://120.52.73.78/arxiv.org/pdf/1312.6199v4.pdf.
[80] NGUYEN A, YOSINSKI J, CLUNE J Deep neural networks are easily fooled:High confidence predictions for unrecognizable images[C]//Computer Vision and Pattern Recognition. IEEE, Boston,USA,2015:427-436.
[81] LIPTON Z C. (Deep learning’s deep flaws)’s deep flaws[EB/OL].[2015-07-28]. http://www.kdnuggets.com/2015/01/deep-learning-flaws-universal-machine-learning.html.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]殷瑞,苏松志,李绍滋.一种卷积神经网络的图像矩正则化策略[J].智能系统学报,2016,11(1):43.[doi:10.11992/tis.201509018]
 YIN Rui,SU Songzhi,LI Shaozi.Convolutional neural network’s image moment regularizing strategy[J].CAAI Transactions on Intelligent Systems,2016,11():43.[doi:10.11992/tis.201509018]
[4]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[5]龚震霆,陈光喜,任夏荔,等.基于卷积神经网络和哈希编码的图像检索方法[J].智能系统学报,2016,11(3):391.[doi:10.11992/tis.201603028]
 GONG Zhenting,CHEN Guangxi,REN Xiali,et al.An image retrieval method based on a convolutional neural network and hash coding[J].CAAI Transactions on Intelligent Systems,2016,11():391.[doi:10.11992/tis.201603028]
[6]师亚亭,李卫军,宁欣,等.基于嘴巴状态约束的人脸特征点定位算法[J].智能系统学报,2016,11(5):578.[doi:10.11992/tis.201602006]
 SHI Yating,LI Weijun,NING Xin,et al.A facial feature point locating algorithmbased on mouth-state constraints[J].CAAI Transactions on Intelligent Systems,2016,11():578.[doi:10.11992/tis.201602006]
[7]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[8]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[9]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[10]杨晓兰,强彦,赵涓涓,等.基于医学征象和卷积神经网络的肺结节CT图像哈希检索[J].智能系统学报,2017,12(6):857.[doi:10.11992/tis.201706035]
 YANG Xiaolan,QIANG Yan,ZHAO Juanjuan,et al.Hashing retrieval for CT images of pulmonary nodules based on medical signs and convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2017,12():857.[doi:10.11992/tis.201706035]
[11]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[12]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]
[13]莫凌飞,蒋红亮,李煊鹏.基于深度学习的视频预测研究综述[J].智能系统学报,2018,13(1):85.[doi:10.11992/tis.201707032]
 MO Lingfei,JIANG Hongliang,LI Xuanpeng.Review of deep learning-based video prediction[J].CAAI Transactions on Intelligent Systems,2018,13():85.[doi:10.11992/tis.201707032]
[14]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]
[15]汪鸿翔,柳培忠,骆炎民,等.高斯核函数卷积神经网络跟踪算法[J].智能系统学报,2018,13(3):388.[doi:10.11992/tis.201612040]
 WANG Hongxiang,LIU Peizhong,LUO Yanmin,et al.Convolutional neutral network tracking algorithm accelerated by Gaussian kernel function[J].CAAI Transactions on Intelligent Systems,2018,13():388.[doi:10.11992/tis.201612040]
[16]冯小荣,惠康华,柳振东.基于卷积特征和贝叶斯分类器的人脸识别[J].智能系统学报,2018,13(5):769.[doi:10.11992/tis.201706052]
 FENG Xiaorong,HUI Kanghua,LIU Zhendong.Face recognition based on convolution feature and Bayes classifier[J].CAAI Transactions on Intelligent Systems,2018,13():769.[doi:10.11992/tis.201706052]
[17]莫宏伟,汪海波.基于Faster R-CNN的人体行为检测研究[J].智能系统学报,2018,13(6):967.[doi:10.11992/tis.201801025]
 MO Hongwei,WANG Haibo.Research on human behavior detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2018,13():967.[doi:10.11992/tis.201801025]
[18]胡越,罗东阳,花奎,等.关于深度学习的综述与讨论[J].智能系统学报,2019,14(1):1.[doi:10.11992/tis.201808019]
 HU Yue,LUO Dongyang,HUA Kui,et al.Overview on deep learning[J].CAAI Transactions on Intelligent Systems,2019,14():1.[doi:10.11992/tis.201808019]
[19]孙必慎,石武祯,姜峰.计算视觉核心问题:自然图像先验建模研究综述[J].智能系统学报,2019,14(1):71.[doi:10.11992/tis.201804019]
 SUN Bishen,SHI Wuzhen,JIANG Feng.Core problem in computer vision: survey of natural image prior models[J].CAAI Transactions on Intelligent Systems,2019,14():71.[doi:10.11992/tis.201804019]
[20]刘彪,黄蓉蓉,林和,等.基于卷积神经网络的盲文音乐识别研究[J].智能系统学报,2019,14(1):186.[doi:10.11992/tis.201805002]
 LIU Biao,HUANG Rongrong,LIN He,et al.Research on braille music recognition based on convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2019,14():186.[doi:10.11992/tis.201805002]

备注/Memo

收稿日期:2015-11-27。
基金项目:吉林省科技厅青年科研基金项目(20140520065JH,20140520076JH);长春工业大学科学研究发展基金自然科学计划项目(2010XN07).
作者简介:刘帅师,女,1981年生,讲师,博士,主要研究方向为模式识别、计算机视觉;程曦,男,1989年生,硕士研究生,主要研究方向为模式识别、机器学习;郭文燕,女,1991年生,硕士研究生,主要研究方向为模式识别、机器学习。
通讯作者:刘帅师.E-mail:liu-shuaishi@126.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com