[1]王景丽,许立波,庞超逸.复杂网络中的在线社交网络演化模型[J].智能系统学报编辑部,2015,10(6):949-953.[doi:10.11992/tis.201507042]
WANG Jingli,XU Libo,PANG Chaoyi.Evolution model of online social networks based on complex networks[J].CAAI Transactions on Intelligent Systems,2015,10(6):949-953.[doi:10.11992/tis.201507042]
点击复制
《智能系统学报》编辑部[ISSN 1673-4785/CN 23-1538/TP] 卷:
10
期数:
2015年第6期
页码:
949-953
栏目:
学术论文—自然语言处理与理解
出版日期:
2015-12-25
- Title:
-
Evolution model of online social networks based on complex networks
- 作者:
-
王景丽1, 许立波2, 庞超逸3
-
1. 宁波大红鹰学院信息工程学院, 浙江宁波 315175;
2. 浙江大学宁波理工学院, 浙江宁波 315000;
3. 浙江大学宁波理工学院, 浙江宁波 315000
- Author(s):
-
WANG Jingli1, XU Libo2, PANG Chaoyi3
-
1. Information Engineering, Ningbo Dahongying University, Ningbo 315175, China;
2. Research Center on Intelligent Computing and Data Management Ningbo Institute of Technology, Zhejiang University, Ningbo 315000, China;
3. Research Center on Intellig
-
- 关键词:
-
复杂网络; 社交网络; 度分布; 幂率分布; 演化; 平均场; 节点度; 拓扑
- Keywords:
-
complex network; social network; degree distribution; power-law distribution; evolution; mean field; node degree; topology
- 分类号:
-
TP393
- DOI:
-
10.11992/tis.201507042
- 摘要:
-
在线社交网络是一种广泛存在的社会网络,其节点度遵循幂率分布规律,但对于其结构演化模型方面的相关研究还不多。基于复杂网络理论研究在线社交网络内部结构特征,提出一种结合内增长、外增长及内部边更替的演化模型,借助平均场理论分析该模型的拓扑特性,实验和理论分析表明由该模型生成的网络,其度分布服从幂率分布,且通过调整参数,幂率指数在1~3,能较好地反映不同类型的真实在线社交网络的度分布特征,因此具有广泛适用性。
- Abstract:
-
As a widespread social network, the node degree of online social networks has been proven by many researchers to follow the power-law distribution. However, there are few studies modeling the evolution of its structure. In this paper, we propose an evolution model that combines the inside growth, outside growth, and edge replacement based on those of complex networks. The topology properties of this model are analyzed using the mean-field theory. Experiment and theoretical analyses show that the degree of a node in a network generated by the new evolution model follows the power-law distribution and that the power-law index ranges between 1 and 3. Therefore, the proposed model can better reflect the node degree distribution characteristics of different types of real online social networks and will have wide applicability.
备注/Memo
收稿日期:2015-07-05;改回日期:。
基金项目:国家自然科学基金资助项目(71271191);宁波市自然科学基金资助项目(2015A610138).
作者简介:王景丽,女,1981年生,讲师。主要研究方向为复杂网络。许立波,男,1976年生,讲师,博士。主要研究方向为复杂网络、overlay网络。
通讯作者:王景丽.E-mailjingli.wang@nbdhyu.edu.cn.
更新日期/Last Update:
1900-01-01