[1]尤雅萍,成运,苏松志,等.基于谱域-空域结合特征和图割原理的高光谱图像分类[J].智能系统学报,2015,10(2):201-208.[doi:10.3969/j.issn.1673-4785.201410040]
 YOU Yaping,CHENG Yun,SU Songzhi,et al.Hyperspectral image classification based on spectral-spatial combination features and graph cut[J].CAAI Transactions on Intelligent Systems,2015,10(2):201-208.[doi:10.3969/j.issn.1673-4785.201410040]
点击复制

基于谱域-空域结合特征和图割原理的高光谱图像分类

参考文献/References:
[1] FONG M. Dimension reduction on hyperspectral images[R]. Los Angeles: University of California, 2007.
[2] WANG J, CHANG C I. Independent component analysis based dimensionality reduction with applications in hyperspectral image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1586-1600.
[3] HUANG H Y, KUO B C. Double nearest proportion feature extraction for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(11): 4034-4046.
[4] 苏红军,杜培军,盛业华. 高光谱遥感数据光谱特征提取算法与分类研究[J]. 计算机应用研究, 2008, 25(2):390-394.SU Hongjun, DU Peijun, SHENG Yesheng. Study on feature extraction and experiment of hyperspectral data[J]. Application Research of Computers, 2008, 25(2): 390-394.
[5] 赵春晖, 齐滨, YOUN E. 基于蒙特卡罗特征降维算法的小样本高光谱图像分类[J]. 红外与毫米波学报, 2013, 32(1): 62-67.ZHAO Chun Hui, QI Bin, YOUN E. Hyperspectral image classification based on Monte Carlo feature reduction method[J]. J Infrared Millim Waves, 2013, 32(1): 62-67.
[6] QIAN Y T, YE M, ZHOU J. Hyperspectral image classification based structured sparse logistic regression and three-dimensional wavelet texture features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4): 2276-2291.
[7] 彭艳斌,艾解清. 基于谱聚类波段选择的高光谱图像分类[J]. 光电工程, 2012, 39(2): 63-67.PENG Yanbin, AI Jieqing. Hyperspectral imagery classification based on spectral clustering band selection[J]. Opto-Electronic Engineering, 2012, 39(2): 63-67.
[8] 王国立,孙杰,肖倩. 结合空-谱信息的高光谱图像分类方法[J]. 黑龙江大学自然科学学报, 2010, 27(6): 788-791.WANG Guoli, SUN Jie, XIAO Qian. Combination of spatial information and spectral information for hyperspectral imagery classification[J]. Journal of Natural Science of HeiLongJiang University, 2010, 27(6): 788-791.
[9] 吴见, 彭道黎. 基于空间信息的高光谱遥感植被分类技术[J]. 农业工程学报, 2012, 28(5): 150-153.WU Jian, PENG Daoli. Vegetation classification technology of hyperspectral remote sensing based on spatial information[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 150-153.
[10] JI R R, GAO Y, HONG R, et al. Spectral-spatial constraint hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1811-1824.
[11] 高恒振,万建伟,粘永健,等. 一种基于谱域-空域组合特征支持向量机的高光谱图像分类算法[J]. 宇航学报, 2011, 32(4): 917-921.GAO Hengzhen, WAN Jianwei, NIAN Yongjian, et al. Hyeprspectral image classification algorithm based on spectral-spatial hybird features and SVM[J]. Journal of Astronautics, 2011, 32(4):917-921.
[12] BENEDIKTSSON A, PALMASON J A, SVEINSSON J R. Classification of hyperspectral data from urban areas based on extended morphological profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 480-491.
[13] FREUND Y and SCHAPIRE R E. A decision theoretic generalization of online learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139.
[14] MARCONCINI M, CAMPS-VALLS G, BRUZZONE L. A composite semisupervised SVM for classification of hyperspectral images[J]. IEEE Geoscience Remote and Sensing Letters, 2009, 6(2): 234-238.
[15] ARCHIBALD R, FANN G. Feature selection and classification of hyperspectral images with support vector machines[J]. IEEE Geoscience Remote and Sensing Letters, 2007, 4(4): 674-677.
[16] BRUZZONE L, CHI M, MARCONCINI M. A novel transductive SVM for semisupervised classification of remote sensing images[J]. IEEE Geoscience Remote and Sensing Letters, 2006, 44(11): 3363-3373.
[17] BOYKOV Y, VEKSLER O, ZABIH R. Fast approximate energy minimization via graph cuts[J]. IEEE Transactions on Pattern Analysis and Machine Inteligence, 2001, 23(11): 1222-1239.
[18] BAI J, XIANG S M, PAN C H. A graph based classification method for hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 51(2): 803-817.
相似文献/References:
[1]李海峰,杜军平.颜色特征的图像分类技术研究[J].智能系统学报,2008,3(2):65.[doi:CNKI:SUN:ZNXT.0.2008-02-017]
[2]李海峰,杜军平.颜色特征的图像分类技术研究[J].智能系统学报,2008,3(2):155.
 LI Hai-feng,DU Jun-ping.Image classification technology based on color features[J].CAAI Transactions on Intelligent Systems,2008,3():155.
[3]姚伏天,钱沄涛.高斯过程及其在高光谱图像分类中的应用[J].智能系统学报,2011,6(5):396.
 YAO Futian,QIAN Yuntao.Gaussian process and its applications in hyperspectral image classification[J].CAAI Transactions on Intelligent Systems,2011,6():396.
[4]赵骞,李敏,赵晓杰,等.基于感受野学习的特征词袋模型简化算法[J].智能系统学报,2016,11(5):663.[doi:10.11992/tis.201601001]
 ZHAO Qian,LI Min,ZHAO Xiaojie,et al.Learning receptive fields for compact bag-of-feature model[J].CAAI Transactions on Intelligent Systems,2016,11():663.[doi:10.11992/tis.201601001]
[5]费宇杰,吴小俊.一种局部聚合描述符和组显著编码相结合的编码方法[J].智能系统学报,2017,12(2):172.[doi:10.11992/tis.201602010]
 FEI Yujie,WU Xiaojun.A new feature coding algorithm based on the combination of group salient coding and VLAD[J].CAAI Transactions on Intelligent Systems,2017,12():172.[doi:10.11992/tis.201602010]
[6]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[7]马忠丽,刘权勇,武凌羽,等.一种基于联合表示的图像分类方法[J].智能系统学报,2018,13(2):220.[doi:10.11992/tis.201611036]
 MA Zhongli,LIU Quanyong,WU Lingyu,et al.Syncretic representation method for image classification[J].CAAI Transactions on Intelligent Systems,2018,13():220.[doi:10.11992/tis.201611036]
[8]魏彩锋,孙永聪,曾宪华.图正则化字典对学习的轻度认知功能障碍预测[J].智能系统学报,2019,14(2):369.[doi:10.11992/tis.201709033]
 WEI Caifeng,SUN Yongcong,ZENG Xianhua.Dictionary pair learning with graph regularization for mild cognitive impairment prediction[J].CAAI Transactions on Intelligent Systems,2019,14():369.[doi:10.11992/tis.201709033]
[9]赵玉新,赵廷.海底声呐图像智能底质分类技术研究综述[J].智能系统学报,2020,15(3):587.[doi:10.11992/tis.202004026]
 ZHAO Yuxin,ZHAO Ting.Survey of the intelligent seabed sediment classification technology based on sonar images[J].CAAI Transactions on Intelligent Systems,2020,15():587.[doi:10.11992/tis.202004026]
[10]高淑萍,赵清源,齐小刚,等.改进MobileNet的图像分类方法研究[J].智能系统学报,2021,16(1):11.[doi:10.11992/tis.202012034]
 GAO Shuping,ZHAO Qingyuan,QI Xiaogang,et al.Research on the improved image classification method of MobileNet[J].CAAI Transactions on Intelligent Systems,2021,16():11.[doi:10.11992/tis.202012034]

备注/Memo

收稿日期:2014-10-29;改回日期:。
基金项目:国家自然科学基金资助项目(61202143);福建省自然科学基金资助项目(2013J05100,2010J01345,2011J01367);湖南省自然科学基金资助项目(12JJ2040).
作者简介:尤雅萍,女,1990年生,硕士研究生,主要研究方向为高光谱图像分类技术;苏松志,1982年生,男,博士,助理教授,主要研究方向为人体行为分析与理解。主持国家青年基金一项,主持省青年基金一项,参与多项国家级基金项目,发表学术论文多篇,其中被SCI检索7篇;李绍滋,1963年生,男,教授,博士生导师,博士,福建省人工智能学会副理事长,主要研究方向为运动目标检测与识别、自然语言处理与多媒体信息检等。发表学术论文200余篇,其中被SCI检索26篇、被EI检索170篇。
通讯作者:李绍滋.E-mail:szlig@xmu.edu.cn.

更新日期/Last Update: 2015-06-15
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com