[1]尤雅萍,成运,苏松志,等.基于谱域-空域结合特征和图割原理的高光谱图像分类[J].智能系统学报,2015,10(2):201-208.[doi:10.3969/j.issn.1673-4785.201410040]
YOU Yaping,CHENG Yun,SU Songzhi,et al.Hyperspectral image classification based on spectral-spatial combination features and graph cut[J].CAAI Transactions on Intelligent Systems,2015,10(2):201-208.[doi:10.3969/j.issn.1673-4785.201410040]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
10
期数:
2015年第2期
页码:
201-208
栏目:
学术论文—机器学习
出版日期:
2015-04-25
- Title:
-
Hyperspectral image classification based on spectral-spatial combination features and graph cut
- 作者:
-
尤雅萍1,3, 成运2, 苏松志1,3, 曹冬林1,3, 李绍滋1,3
-
1. 厦门大学 信息科学与技术学院, 福建 厦门 361005;
2. 湖南人文科技学院 信息科学与工程系, 湖南 娄底 417000;
3. 福建省仿脑智能系统重点实验室, 福建 厦门 361005
- Author(s):
-
YOU Yaping1,3, CHENG Yun2, SU Songzhi1,3, CAO Donglin1,3, LI Shaozi1,3
-
1. School of Information Science and Technology, Xiamen University, Xiamen 361005, China;
2. Department of Information Science and Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, China;
3. Fujian Key Laboratory of the Brain-Like Intelligent Systems, Xiamen 361005, China
-
- 关键词:
-
高光谱; 图像分类; 谱域特征; 空域特征; 谱域-空域结合特征; 均值特征; 支持向量机; 图割原理
- Keywords:
-
hyperspectral; image classification; spectral feature; spatial feature; spectral-spatial combination feature; mean features; support vector machines; graph cut
- 分类号:
-
TP391.4
- DOI:
-
10.3969/j.issn.1673-4785.201410040
- 文献标志码:
-
A
- 摘要:
-
高光谱图像中存在着特征维度高而训练集小的问题。为解决该问题,提出了一种2步走的分类方法:1)通过支持向量机对图像进行初步分类,根据分类结果计算出每个类别的均值特征;2)使用1)计算出来的均值特征作为能量函数的数据项,然后利用图割原理对图像做二次分类。实验中发现:空间上相近的像素点往往具有相似的特征,且属于同一个类别。针对这种现象,提取一个将谱域特征和空域特征相结合的新特征。该特征既包含了光谱信息也包含了空间信息,具有较好的分类性能和鲁棒性。在Indian Pine数据集和Pavia University数据集进行实验,实验结果表明了本文提出方法的有效性。
- Abstract:
-
The high-dimension of the feature vs. small-size of training set is an unsolved problem in the hyperspectral image classification task. To solve this problem a two-step classification method is proposed. Firstly, a preliminary classification is performed by the support vector machine (SVM) and the classification results are used to calculate the mean feature (MF) of each class. Secondly, a classification based on the graph cut theory is applied with the MFs as an input of the energy function. The experimental results showed that spatially nearby pixels have large possibilities of having the same label and similar features. Therefore, a new feature called spectral-spatial combination (SSC) is extracted that combines the spectral-based feature and spatial-based feature. The SSC feature contains the related spectral and spatial information of each pixel and provides better classification performance and robustness. Experiment results on the Indian Pine dataset and the Pavia University dataset demonstrated the effectiveness of the proposed method.
备注/Memo
收稿日期:2014-10-29;改回日期:。
基金项目:国家自然科学基金资助项目(61202143);福建省自然科学基金资助项目(2013J05100,2010J01345,2011J01367);湖南省自然科学基金资助项目(12JJ2040).
作者简介:尤雅萍,女,1990年生,硕士研究生,主要研究方向为高光谱图像分类技术;苏松志,1982年生,男,博士,助理教授,主要研究方向为人体行为分析与理解。主持国家青年基金一项,主持省青年基金一项,参与多项国家级基金项目,发表学术论文多篇,其中被SCI检索7篇;李绍滋,1963年生,男,教授,博士生导师,博士,福建省人工智能学会副理事长,主要研究方向为运动目标检测与识别、自然语言处理与多媒体信息检等。发表学术论文200余篇,其中被SCI检索26篇、被EI检索170篇。
通讯作者:李绍滋.E-mail:szlig@xmu.edu.cn.
更新日期/Last Update:
2015-06-15