[1]裴振兵,陈雪波.改进蚁群算法及其在机器人避障中的应用[J].智能系统学报,2015,10(1):90-96.[doi:10.3969/j.issn.1673-4785.201311018]
PEI Zhenbing,CHEN Xuebo.Improved ant colony algorithm and its application in obstacle avoidance for robot[J].CAAI Transactions on Intelligent Systems,2015,10(1):90-96.[doi:10.3969/j.issn.1673-4785.201311018]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
10
期数:
2015年第1期
页码:
90-96
栏目:
学术论文—智能系统
出版日期:
2015-03-25
- Title:
-
Improved ant colony algorithm and its application in obstacle avoidance for robot
- 作者:
-
裴振兵1, 陈雪波2
-
1. 辽宁科技大学 电子与信息工程学院, 辽宁 鞍山 114051;
2. 辽宁科技大学 研究生院, 辽宁 鞍山 114051
- Author(s):
-
PEI Zhenbing1, CHEN Xuebo2
-
1. School of Electronics and Information Engineering, Liaoning University of Science and Technology, Anshan 114051, China;
2. Graduate school, Liaoning University of Science and Technology, Anshan 114051, China
-
- 关键词:
-
改进蚁群算法; 互锁; 机器人; 避障; 栅格法; 建模; 凹形障碍物; 死锁
- Keywords:
-
improved ant colony optimization; interlock; robots; obstacle avoidance; grid method; modeling; concave obstacle; deadlock
- 分类号:
-
TP242
- DOI:
-
10.3969/j.issn.1673-4785.201311018
- 文献标志码:
-
A
- 摘要:
-
提出了一种改进蚁群算法. 首先针对蚁群算法在构造解过程中收敛速度慢且容易陷入局部最优,提出了在蚁群搜索路径过程中,通过建立α(信息素启发式因子)和β(期望启发式因子)的互锁关系,动态自适应调整α、β;其次针对蚁群算法在面对凹形障碍物易陷入死锁,降低搜索效率,提出了广义信息素更新规则;最后利用栅格法进行静态已知环境建模,通过不同规模TSP的仿真验证了该方法的可行性和有效性,同时将其应用到机器人避障并取得了较好实验效果。
- Abstract:
-
An improved ant colony algorithm is proposed in this paper. Firstly, in order to overcome the demerits of the ant colony algorithm, such as low convergence speed and easy to get into the local optimum, α and β are dynamically adaptively adjusted by establishing an interlock between alpha (pheromone heuristic factor) and beta (expected heuristic factor) in the searching route process of ant colony. Secondly, in order to prevent the ant colony algorithm from falling into deadlock when facing concave obstacles, which decreases search efficiency, an update rule of the generalized pheromone is proposed. Finally, static modeling for a known environment is conducted by the grid method. The simulation experiments showed that with different scales of TSP, the improved ant colony algorithm is feasible and efficient. In addition, this algorithm is applied to the obstacle avoidance of robots and the results are effective.
备注/Memo
收稿日期:2013-11-7;改回日期:。
基金项目:国家自然科学基金资助项目(60874017).
作者简介:裴振兵,男,1989年生,硕士研究生,主要研究方向为智能优化及机器人路径规划;陈雪波,男,1960年生,教授,博士生导师,中国自动化学会过程控制专业委员会委员。主要研究方向为复杂系统、群集智能等。主持多项国家及省部级科研基金项目,出版专著1部。
通讯作者:陈雪波.E-mail:xuebochen@126.com.
更新日期/Last Update:
2015-06-16