[1]张平,刘三阳,朱明敏.基于人工蜂群算法的贝叶斯网络结构学习[J].智能系统学报,2014,9(3):325-329.[doi:10.3969/j.issn.1673-4785.201310014]
 ZHANG Ping,LIU Sanyang,ZHU Mingmin.Structure learning of Bayesian networks by use of the artificial bee colony algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(3):325-329.[doi:10.3969/j.issn.1673-4785.201310014]
点击复制

基于人工蜂群算法的贝叶斯网络结构学习

参考文献/References:
[1] CAI Z, SUN S, SI S, et al. Identifying product failure rate based on a conditional Bayesian network classifier[J]. Expert Systems with Applications, 2011, 38(5):5036-5043.
[2] HSIEH N C, HUNG L P. A data driven ensemble classifier for credit scoring analysis[J]. Expert Systems with Applications, 2010, 37(1):534-545.
[3] De CAMPOS L M. Independency relationships and learning algorithms for singly connected networks[J]. Journal of Experimental & Theoretical Artificial Intelligence, 1998, 10(4):511-549.
[4] De CAMPOS L M, HUETE J F. A new approach for learning belief networks using independence criteria[J]. International Journal of Approximate Reasoning, 2000, 24(1):11-37.
[5] COOPER G F, HERSKOVITS E. A Bayesian method for the induction of probabilistic networks from data[J]. Machine Learning, 1992, 9(4):309-347.
[6] HECKERMAN D, GEIGER D, CHICKERING D M. Learning Bayesian networks:The combination of knowledge and statistical data[J]. Machine Learning, 1995, 20(3):197-243.
[7] LAM W, BACCHUS F. Learning Bayesian belief networks:an approach based on the MDL principle[J]. Computational Intelligence, 1994, 10(3):269-293.
[8] COOPER G F, HERSKOVITS E. A Bayesian method for the induction of probabilistic networks from data[J]. Machine Learning, 1992, 9(4):309-347.
[9] CHICKERING D M. Optimal structure identification with greedy search[J]. The Journal of Machine Learning Research, 2003(3):507-554.
[10] KARABOGA D. An idea based on honey bee swarm for numerical optimization[R]. Erciyes university, engineering faculty, computer engineering department, 2005.
[11] KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization:artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39(3):459-471.
[12] KARABOGA D, BASTURK B. On the performance of artificial bee colony (ABC) algorithm[J]. Applied soft Computing, 2008, 8(1):687-697.
[13] KARABOGA D, AKAY B. Artificial bee colony (abc) algorithm on training artificial neural networks[C]//2007 IEEE 15th Signal Processing and Communications Applications. Eskisehir:IEEE Press, 2007:1-4.
[14] KARABOGA D, OZTURK C. Neural networks training by artificial bee colony algorithm on pattern classification[J]. Neural Netw World, 2009, 19(3):279-292.
[15] OZTURK C, KARABOGA D. Hybrid artificial bee colony algorithm for neural network training[C]//2011 IEEE Congress on Evolutionary Computation. New Orleans, LA:IEEE Press, 2011:84-88.
[16] ABACHIZADEH M, YAZDI M, YOUSEFI-KOMA A. Optimal tuning of PID controllers using artificial bee colony algorithm[C]//2010 IEEE/ASME International Conference on Advanced Intelligent. Montreal:IEEE Press, 2010:379-384.
[17] LARRANAGA P, POZA M, YURRAMENDI Y. et al. Structure learning of Bayesian networks by genetic algorithms:a performance analysis of control parameters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(9):912-926.
[18] 许丽佳, 黄建国, 王厚军, 等. 混合优化的贝叶斯网络结构学习[J]. 计算机辅助设计与图形学报, 2009, 21(5):633-639. XU Lijia, HUANG Jianguo, WANG Houjun, et al. Hybrid optimized algorithm for learning Bayesian network structure[J]. Journal of Computer-Aided Design & Computer Graphics, 2009, 21(5):633-639.
[19] CHOW C, LIU C. Approximation discrete probability distributions with dependence trees[J]. IEEE Transactions on Information Theory, 1968, 14(3):462-467.
相似文献/References:
[1]杨有龙,刘? 蔚,吴?? 艳.贝叶斯网络的非忠实性分布[J].智能系统学报,2009,4(4):335.
 YANG You-long,LIU Wei,WU Yan.Unfaithful distributions with respect to Bayesian networks[J].CAAI Transactions on Intelligent Systems,2009,4():335.
[2]李冰寒,高晓利,刘三阳,等.利用互信息学习贝叶斯网络结构[J].智能系统学报,2011,6(1):68.
 LI-Binghan,GAO-Xiaoli,LIU-Sanyang,et al.Learning Bayesian network structures based on mutual information[J].CAAI Transactions on Intelligent Systems,2011,6():68.
[3]郭坤,王浩,姚宏亮,等.逻辑回归分析的马尔可夫毯学习算法[J].智能系统学报,2012,7(2):153.
 GUO Kun,WANG Hao,YAO Hongliang,et al.An algorithm for a Markov blanket based on ?logistic regression analysis[J].CAAI Transactions on Intelligent Systems,2012,7():153.
[4]段海滨,马冠军,赵振宇.基于模糊规则和动态蚁群贝叶斯网络的无人作战飞机态势评估[J].智能系统学报,2013,8(2):119.[doi:10.3969/j.issn.1673-4785.201211031]
 DUAN Haibin,MA Guanjun,ZHAO Zhenyu.UCAV situation assessment based on fuzzy rules and dynamic ant colony-Bayesian network[J].CAAI Transactions on Intelligent Systems,2013,8():119.[doi:10.3969/j.issn.1673-4785.201211031]
[5]张兴,陈昊.差分隐私的高维数据发布研究综述[J].智能系统学报,2021,16(6):989.[doi:10.11992/tis.202104023]
 ZHANG Xing,CHEN Hao.A research review of high-dimensional data publishing based on a differential privacy model[J].CAAI Transactions on Intelligent Systems,2021,16():989.[doi:10.11992/tis.202104023]
[6]曾振宇,程雨夏,陶颖,等.数字报版面布局自动生成方法[J].智能系统学报,2024,19(3):679.[doi:10.11992/tis.202207020]
 ZENG Zhenyu,CHENG Yuxia,TAO Ying,et al.Automated generation method of digital newspaper layout[J].CAAI Transactions on Intelligent Systems,2024,19():679.[doi:10.11992/tis.202207020]
[7]曾繁慧,胡光闪,孙慧,等.因素空间理论下的因果概率推理分类算法研究[J].智能系统学报,2024,19(4):1042.[doi:10.11992/tis.202206004]
 ZENG Fanhui,HU Guangshan,SUN Hui,et al.A causal probabilistic inference classification algorithm based on factor space theory[J].CAAI Transactions on Intelligent Systems,2024,19():1042.[doi:10.11992/tis.202206004]

备注/Memo

收稿日期:2013-11-04。
基金项目:国家自然科学基金资助项目(61075055);西安电子科技大学基本科研业务基金资助项目(K5051270013).
作者简介:刘三阳,男,1959年生,教授,博士生导师,主要研究方向为优化理论及其应用、网络算法。主持多项国家级项目,发表多篇学术论文;朱明敏,女,1985年生,讲师,博士后,主要研究方向为优化算法及其在贝叶斯网络结构学习中的应用。
通讯作者:张平,女,1988年生,硕士研究生,主要研究方向为优化算法、贝叶斯网络结构学习,E-mail:pzhangxdedu@163.com。

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com