[1]张多,韩逢庆.基于支持向量机和有序聚类的岩层识别[J].智能系统学报,2014,9(1):98-103.[doi:10.3969/j.issn.1673-4785.201304019]
 ZHANG Duo,HAN Fengqing.Stratum identification based on the SVM and ordered cluster[J].CAAI Transactions on Intelligent Systems,2014,9(1):98-103.[doi:10.3969/j.issn.1673-4785.201304019]
点击复制

基于支持向量机和有序聚类的岩层识别

参考文献/References:
[1] 林海燕,戴云,肖慈珣.一种基于沃希变换的测井自动分层方法[J].成都理工学院学报, 1999, 26(1): 52-57.LIN Haiyan, DAI Yun, XIAO Cixun. A well-log automated identification of rock boundaries method based on Walsh transform[J]. Journal of Chengdu University of Technology, 1999, 26(1): 52-57.
[2] 肖波,韩学辉,周开金.测井曲线自动分层方法回归与展望[J].地球物理学进展, 2010, 25(5): 1802-1810.XIAO Bo, HAN Xuehui, ZHOU Kaijin. A review and outlook of automatic zonation methods of well log[J]. Progress in Geophysics, 2010, 25(5): 1802-1810.
[3] WOLF M, PELISSIER-COMBESCURE J. Faciolog automatic electrofacies determination[C]//SPWLA 23rd Annual Logging Symposium. Corpus Christi, USA, 1982: 6-9.
[4] HAWKINS D M, MERRIAM D F. Optimal zonation of digitized sequential data[J]. Mathematical Geology, 1973, 5(4): 389-396.
[5] 张明玉.极值方差聚类法在测井分层取值中的应用[J].新疆石油地质, 2002, 23(5): 429-431.ZHANG Mingyu. Application of minimax variance cluster analysis method in well log layering[J]. Xinjiang Petroleum Geology, 2002, 23(5): 429-431.
[6] 宋延杰,张剑风,闫伟林,等.基于支持向量机的复杂岩性测井识别方法[J].大庆石油学院学报, 2007, 31(5): 18-20.SONG Yanjie, ZHANG Jianfeng, YAN Weilin, et al. A new identification method for complex lithology with support vector machine[J]. Journal of Daqing Petroleum Institute, 2007, 31(5): 18-20.
[7] 赵军,程鹏飞,刘地渊,等.支持向量机在水淹层测井识别的应用[J].物探与化探, 2008, 32(6): 652-655.ZHAO Jun, CHENG Pengfei, LIU Diyuan, et al. The application of the support vector machine to the recognition of flooding formation[J]. Geophysical and Geochemical Exploration, 2008, 32(6): 652-655.
[8] 文政,高松洋,毕广武.支持向量机在复杂岩性测井识别中的应用[J].大庆石油地质与开发, 2009, 28(1): 134-137.WEN Zheng, GAO Songyang, BI Guangwu. Application of support vector machine (SVM) in complex lithology identification by well logging[J]. Petroleum Geology and Oilfield Development in Daqing, 2009, 28(1): 134-137.
[9] VAPNIK V. The nature of statistical learning theory[M]. New York, USA: Springer-Verlag, 1995.
[10] 刘跃辉,郑建东.基于支持向量机原理的复杂地层岩性识别方法[J].国外测井技术, 2011(4): 22-26.LIU Yuehui, ZHENG Jiandong. The lithology identification method based on support vector machine principle[J]. World Well Logging Technology, 2011(4): 22-26.
[11] 李茂宽,关键.基于模糊C均值的支持向量机数据分类识别[J].系统仿真学报, 2005, 17(7): 1785-1787.LI Maokuan, GUAN Jian. Data classification and recognition of support vector machines based on fuzzy C-means clustering[J]. Journal of System Simulation, 2005, 17(7): 1785-1787.
[12] 柯永振,张加万,孙济洲,等.结合支持向量机与C均值聚类的图像分割[J].计算机应用, 2006, 26(9): 2081-2083.KE Yongzhen, ZHANG Jiawan, SUN Jizhou, et al. Image segmentation combining support vector machines with C-means[J]. Journal of Computer Applications, 2006, 26(9): 2081-2083.
[13] 万应明,高峻,董建平,等.多测井曲线合成应用方法初探[J]. 石油物探, 2005, 44(1): 71-75.WAN Yingming, GAO Jun, DONG Jianping, et al. The primary discussion to the application of synthetic multiple-logging[J]. Geophysical Prospecting for Petroleum, 2005, 44(1): 71-75.
[14] 赵磊,李国和,马现峰.基于支持向量机的地层识别研究[J].计算机工程与应用, 2006, 35(1): 230-232.ZHAO Lei, LI Guohe, MA Xianfeng. Research of stratum recognition based on support vector machine[J]. Computer Engineering and Applications, 2006, 35(1): 230-232.
[15] 郑延斌,李国和.支持向量机在地层识别中的应用[J].河南师范大学学报:自然科学版, 2009, 37(2): 37-39.ZHENG Yanbin, LI Guohe. Application of support vector machine to stratum recognition[J]. Journal of Henan Normal University: Natural Science, 2009, 37(2): 37-39.
相似文献/References:
[1]王书舟,伞 冶.支持向量机的训练算法综述[J].智能系统学报,2008,3(6):467.
 WANG Shu-zhou,SAN Ye.A survey on training algorithms for support vector machine[J].CAAI Transactions on Intelligent Systems,2008,3():467.
[2]陈小娥,陈昭炯.多类SVM在图像艺术属性分类中的应用研究[J].智能系统学报,2009,4(2):157.
 CHEN Xiao-e,CHEN Zhao-jiong.An application of multiclass SVM in the classification of artistic attributes of images[J].CAAI Transactions on Intelligent Systems,2009,4():157.
[3]黄剑华,唐降龙,刘家锋,等.一种基于Homogeneity的文本检测新方法[J].智能系统学报,2007,2(1):69.
 HUANG Jian-hua,TANG Xiang-long,LIU Jia-feng,et al.A new method for text detection based on Homogeneity[J].CAAI Transactions on Intelligent Systems,2007,2():69.
[4]张 亮,朱振峰,赵 耀,等.基于镜头的鲁棒视频广告检测[J].智能系统学报,2007,2(2):83.
 ZHANG Liang,ZHU Zhen-feng,ZHAO Yao,et al.Video commercial detection based on the robustness of sho t[J].CAAI Transactions on Intelligent Systems,2007,2():83.
[5]赵春晖,陈万海,万? 建.一种改进的多类支持向量机超光谱图像分类方法[J].智能系统学报,2008,3(1):77.
 ZHAO Chun-hui,CHEN Wan-hai,WAN jian.An improved hyperspectral image classification method for? a multiclass support vector machine[J].CAAI Transactions on Intelligent Systems,2008,3():77.
[6]杨志豪,洪 莉,林鸿飞,等.基于支持向量机的生物医学文献蛋白质关系抽取[J].智能系统学报,2008,3(4):361.
 YANG Zhi-hao,HONG L i,L IN Hong-fei,et al.Extraction of information on prote in2prote in interaction from biomedical literatures using an SVM[J].CAAI Transactions on Intelligent Systems,2008,3():361.
[7]刘? 琚,乔建苹.基于学习的超分辨率重建技术[J].智能系统学报,2009,4(3):199.
 LIU Ju,QIAO Jian-ping.Learningbased superresolution reconstruction[J].CAAI Transactions on Intelligent Systems,2009,4():199.
[8]刘 胜,李高云,江 娜.SVM性能的免疫鱼群多目标优化研究[J].智能系统学报,2010,5(2):144.
 LIU Sheng,LI Gao-yun,JIANG Na.Multiobjective optimization of an immune fish swarm algorithm to improve support vector machine performance[J].CAAI Transactions on Intelligent Systems,2010,5():144.
[9]杨振兴,刘久富,孙 琳.不变量的程序潜在错误预测[J].智能系统学报,2010,5(4):327.
 YANG Zhen-xing,LIU Jiu-fu,SUN Lin.Using invariants to predict the potential for errors in programs[J].CAAI Transactions on Intelligent Systems,2010,5():327.
[10]古丽娜孜,孙铁利,伊力亚尔,等.一种基于主动学习支持向量机哈萨克文文本分类方法[J].智能系统学报,2011,6(3):261.
 GU Linazi,SUN Tieli,YI Liyaer,et al.An approach to the text categorization of the Kazakh language based on an active learning support vector machine[J].CAAI Transactions on Intelligent Systems,2011,6():261.

备注/Memo

收稿日期:2013-04-11。
基金项目:国家自然科学基金资助项目(51208538).
作者简介:韩逢庆,男,1968年生,重庆市工业与应用数学学会理事,重庆市运筹学学会理事。主要研究方向为机器学习、人工智能、小波理论及应用等,发表学术论文30余篇,其中被SCI、EI、ISTP检索20余篇。
通讯作者:张多,女,1988年生,硕士研究生,主要研究方向为机器学习、人工智能.E-mail:cqzhangd2012@163.com.

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com