[1]孙文新,穆华平.自适应群体结构的粒子群优化算法[J].智能系统学报,2013,8(4):372-376.[doi:10.3969/j.issn.1673-4785.201211041]
SUN Wenxin,MU Huaping.Particle swarm optimization based on self-adaptive population structure[J].CAAI Transactions on Intelligent Systems,2013,8(4):372-376.[doi:10.3969/j.issn.1673-4785.201211041]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
8
期数:
2013年第4期
页码:
372-376
栏目:
学术论文—机器学习
出版日期:
2013-08-25
- Title:
-
Particle swarm optimization based on self-adaptive population structure
- 文章编号:
-
1673-4785(2013)04-0372-05
- 作者:
-
孙文新1,穆华平2
-
1. 鹤壁职业技术学院 电子信息工程学院,河南 鹤壁 458030; 2. 鹤壁职业技术学院 公共基础教研部,河南 鹤壁 458030
- Author(s):
-
SUN Wenxin1, MU Huaping2
-
1.School of Electronic Information Engineering, Hebi Occupation Technology College, Hebi 458030, China; 2. Department of Public Infrastructure, Hebi Occupation Technology College, Hebi 458030, China
-
- 关键词:
-
粒子群优化算法; 自适应; 群体结构; 惯性权重
- Keywords:
-
particle swarm optimization; self-adaptive; population structure; inertia weight
- 分类号:
-
TP18
- DOI:
-
10.3969/j.issn.1673-4785.201211041
- 文献标志码:
-
A
- 摘要:
-
粒子群优化算法中,群体结构的组织模式直接决定了粒子间信息的共享和交流方式.根据复杂网络形成过程中的动力学原理,提出了一种自适应群体结构的粒子群优化算法.算法初期粒子空间分布分散,搜索过程中不断产生新的连接,群体的搜索模式由Lbest? 模型逐渐进化为Gbest? 模型,群体结构的这种进化方式有利于算法早期的“勘探”和后期的“开采”.实验结果表明,新算法在收敛性能上获得了较大提高.
- Abstract:
-
In particle swarm optimization, the organization mode of population structure directly determines the information sharing and exchange between the particles which produce great influence. Based on the principle of dynamics in the formation process of the complex network, a new particle swarm optimization algorithm was proposed, which is a self-adaptive population structure. At the initial stages of the algorithm, particles are more dispersed with small amount of random connections and search mode is single. With the generation of new connections, the search mode of particles was gradually evolved from Lbest model to Gbest model, which is beneficial to better optimization performance. The evolution of population structure is conducive to early “exploration” and late “exploitation” of the algorithm. The experimental results show that the convergence performance of the new algorithm has been greatly improved.
更新日期/Last Update:
2013-09-27