[1]陈建平,王建彬,杨宜民.基于大脑情感学习的四轮驱动机器人速度补偿控制[J].智能系统学报,2013,8(4):361-366.[doi:10.3969/j.issn.1673-4785.201303030]
CHEN Jianping,WANG Jianbin,YANG Yimin.Velocity compensation control for a four-wheel drive robot based on brain emotional learning[J].CAAI Transactions on Intelligent Systems,2013,8(4):361-366.[doi:10.3969/j.issn.1673-4785.201303030]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
8
期数:
2013年第4期
页码:
361-366
栏目:
学术论文—智能系统
出版日期:
2013-08-25
- Title:
-
Velocity compensation control for a four-wheel drive robot based on brain emotional learning
- 文章编号:
-
1673-4785(2013)04-0361-06
- 作者:
-
陈建平1,王建彬2,杨宜民2
-
1. 肇庆学院 计算机学院,广东 肇庆 526061; 2. 广东工业大学 自动化学院,广东 广州 510090
- Author(s):
-
CHEN Jianping1, WANG Jianbin2, YANG Yimin2
-
1. School of Computer Science, Zhaoqing University, Zhaoqing 526061, China; 2. School of Automation, Guangdong University of Technology, Guangzhou 510090, China
-
- 关键词:
-
全向移动机器人; 大脑情感学习; 速度补偿; 轨迹跟踪; 运动控制
- Keywords:
-
omni-directional mobile robots; brain emotional learning; velocity compensation; trajectory tracking; motion control
- 分类号:
-
TP242.6
- DOI:
-
10.3969/j.issn.1673-4785.201303030
- 文献标志码:
-
A
- 摘要:
-
由于4轮驱动机器人的轮间耦合特性及系统非线性的存在,即使单个驱动电机的控制精度达到最优,机器人整体的运动控制效果也未必理想.针对这一问题,提出一种基于大脑情感学习的机器人速度补偿控制方法.基于大脑情感学习计算模型,设计了融合机器人整体速度跟踪误差及其积分、微分信息的补偿控制器,通过计算模型内部各节点权值的在线学习,及时地调整控制器的参数,实现对4个轮子速度的自适应补偿.仿真实验表明,该方法有效减小了非线性干扰对系统的影响,具有较高的稳态控制精度和较快的响应速度,大大提高了机器人整体的速度和轨迹跟踪精度.
- Abstract:
-
Since there are system nonlinearity and couple relationships in four wheels, even each motor has the optimal parameters, and the whole robot may not be precisely controlled. A velocity compensation controller based on brain emotional learning was applied to the motion control of a four-wheel drive omni-directional mobile robot (FDOMR) in this paper, which contains differential and integral information of robot speed tracking errors. By means of the parameters adjusted through online learning of weight of every node inside the computing model, adaptive compensation of four wheels’ speed was achieved. The simulation results show that the influence produced by non-linear disturbance is effectively decreased; as a result, the system has higher steady-state control precision and faster response speed, greatly increasing the whole velocity and trajectory control precision of the robot.
备注/Memo
收稿日期:2013-03-18. 网络出版日期:2013-06-03.
基金项目:广东省自然科学基金资助项目(S2011010004006);广东省教育部产学研结合资助项目(2012B091100423);肇庆市科技计划资助项目(2010F006);肇庆学院科研启动基金资助项目(2012KQ01).
通信作者:陈建平. E-mail: jpchen@zqu.edu.cn.
作者简介:
陈建平,男,1975年生,副教授,博士,主要研究方向为人工智能与智能机器人,获国家实用新型专利1项,发表学术论文20余篇,出版著作1部.
王建彬,男,1982年生,博士研究生,主要研究方向为智能机器人与智能控制,发表学术论文8篇.
杨宜民,男,1945年生,教授,博士生导师,主要研究方向为智能机器人、自动控制、机器视觉等,发表学术论文100余篇,出版著作6部.
更新日期/Last Update:
2013-09-27