[1]李杨,郝志峰,谢光强,等.质量度量指标驱动的数据聚合与多维数据可视化[J].智能系统学报,2013,8(4):299-304.[doi:10.3969/j.issn.1673-4785.201304039]
LI Yang,HAO Zhifeng,XIE Guangqiang,et al.Quality-metrics driven multi-dimensional data aggregation and visualization[J].CAAI Transactions on Intelligent Systems,2013,8(4):299-304.[doi:10.3969/j.issn.1673-4785.201304039]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
8
期数:
2013年第4期
页码:
299-304
栏目:
学术论文—机器学习
出版日期:
2013-08-25
- Title:
-
Quality-metrics driven multi-dimensional data aggregation and visualization
- 文章编号:
-
1673-4785(2013)04-0299-06
- 作者:
-
李杨1,2,郝志峰2,3,谢光强1,2,袁淦钊3
-
1.广东工业大学 自动化学院, 广东 广州 510006; 2.广东工业大学 计算机学院, 广东 广州 510006; 3.华南理工大学 计算机科学与工程学院,广东 广州 510006
- Author(s):
-
LI Yang1,2, HAO Zhifeng2,3, XIE Guangqiang1,2, YUAN Ganzhao 3
-
1.School of Automation, Guangdong University of Technology, Guangzhou 510006, China; 2.School of Computers, Guangdong University of Technology, Guangzhou 510006, China; 3.School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China
-
- 关键词:
-
质量度量; 数据空间; 数据聚合; K-均值; 多维数据可视化
- Keywords:
-
quality-metrics; data space; data aggregation; K-means; multi-dimensional data visualization
- 分类号:
-
TP391
- DOI:
-
10.3969/j.issn.1673-4785.201304039
- 文献标志码:
-
A
- 摘要:
-
以多维数据可视化为研究对象,在质量度量模型下,采用数据聚合为基本手段,来提高多维数据可视化的图像质量.在质量度量指标驱动的框架下提出了均分 K-means++数据聚合算法,在传统 K-means算法的基础上,专门以数据可视化为目的对算法进行了改进,使得算法聚合得到的数据既能够较好地保持原数据的大部分特性,又能显著地提高可视化后的图像质量.仿真实验证明,在不同的数据抽象级别DAL下,无论是图像质量指标还是质量度量指标HDM(直方图差值度量)、NNM(最近邻距离度量),算法都表现出了较好的仿真结果.
- Abstract:
-
For the purpose of this research paper, we examined multi-dimensional data visualization with the quality metrics model; taking data aggregation as a basic means in order to improve the multi-dimensional visualization image quality. Under the quality-metrics driven framework, we put forward a data aggregation algorithm called equipartition K-means++ based on conventional K-means, and thus, were able to improve the algorithm especially as it pertains to data visualization. The aggregated data obtained by equipartition K-means++ may not only preserve most features of the original data, but also improve the image quality after visualization. Our simulation experiments show that at each value of data abstraction level (DAL), equipartition K-means++ get good results, not only in visualization image quality but also quality metrics of histogram difference measure (HDM) and nearest neighbor measure (NNM).
更新日期/Last Update:
2013-09-23