[1]周红标,张宇林,丁友威,等.自适应概率神经网络及其在白酒电子鼻中的应用[J].智能系统学报,2013,8(2):177-182.[doi:10.3969/j.issn.1673-4785.201209026]
ZHOU Hongbiao,ZHANG Yulin,DING Youwei,et al.Application of adaptive probabilistic neural network in Chinese liquor E-Nose[J].CAAI Transactions on Intelligent Systems,2013,8(2):177-182.[doi:10.3969/j.issn.1673-4785.201209026]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
8
期数:
2013年第2期
页码:
177-182
栏目:
学术论文—机器学习
出版日期:
2013-04-25
- Title:
-
Application of adaptive probabilistic neural network in Chinese liquor E-Nose
- 文章编号:
-
1673-4785(2013)02-0177-06
- 作者:
-
周红标1,张宇林1,丁友威1,刘佳佳2
-
1.淮阴工学院 电子与电气工程学院,江苏 淮安 223003;
2.南京师范大学 电气与自动化工程学院,江苏 南京 210042
- Author(s):
-
ZHOU Hongbiao1, ZHANG Yulin1, DING Youwei1, LIU Jiajia2
-
1.Faculty of Electronic and Electrical Engineering, Huaiyin Institute of Technology, Huai’an 223003, China;
2.School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042, China
-
- 关键词:
-
差异演化算法; 自适应概率神经网络; 电子鼻; 白酒识别
- Keywords:
-
differential evolution algorithm; adaptive probabilistic neural network; electronic nose; hard liquor quality recognition
- 分类号:
-
TP183;TS262.3
- DOI:
-
10.3969/j.issn.1673-4785.201209026
- 文献标志码:
-
A
- 摘要:
-
为了探索电子鼻对白酒品质鉴别的可能性,利用自制的新型无线白酒电子鼻对洋河海之蓝、今世缘省接待、安徽迎驾大曲和牛栏山陈酿进行了分析.对所采集的数据进行平滑处理后提取稳态响应值和斜率值,利用主成分分析对特征向量进行降维处理,并将获得的前2个主元得分作为概率神经网络识别模型的输入参量.针对传统概率神经网络平滑因子σ单一易导致分类错误的缺陷,利用差异演化算法优化σ参数集,建立了自适应概率神经网络识别模型.实验结果表明,DE-PNN相比BP-PNN、PSO-PNN和SVM等,识别精度更高,抗噪性能更好,同时也证明了电子鼻能有效地检出不同品牌的白酒.
- Abstract:
-
In order to explore the possibility of hard liquor quality recognition by an electronic nose, the Chinese liquor of Yanghe Haizhilan, Jinshiyuan Shengjiedai, Anhui Yingjiadaqu, and Niulanshan Chenniang were analyzed by using self-made new wireless electronic nose for recognition of hard liquor quality. Firstly, the steady-state response and slope values were extracted after smoothing the collected data. Secondly, principal component analysis PCA was used to reduce the dimension of the eigenvector, and the obtained first two principal components scores were then used as the input parameters of the probabilistic neural network recognition model. Next, the aim was to overcome defect of traditional probabilistic neural network smoothing factor which would cause classification error easily. The method of adaptive probabilistic neural network identification model was presented, utilizing differential evolution algorithm to optimize the set of parameters. The results show that differential evolution-probabilistic neural network obtained a high recognition accuracy and noise immunity compared to back propagation, particle swarm optimization-probabilistic neural network and support vector machine. The experiment also proved that the electronic nose can effectively detect different liquor brands in China.
更新日期/Last Update:
2013-05-26