[1]李一波,李昆.双视角下多特征信息融合的步态识别[J].智能系统学报,2013,8(1):74-79.[doi:10.3969/j.issn.1673-4785.201209033]
LI Yibo,LI Kun.Gait recognition based on dual view and multiple feature information fusion[J].CAAI Transactions on Intelligent Systems,2013,8(1):74-79.[doi:10.3969/j.issn.1673-4785.201209033]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
8
期数:
2013年第1期
页码:
74-79
栏目:
学术论文—机器感知与模式识别
出版日期:
2013-03-25
- Title:
-
Gait recognition based on dual view and multiple feature information fusion
- 文章编号:
-
1673-4785(2013)01-0074-05
- 作者:
-
李一波,李昆
-
沈阳航空航天大学 自动化学院,辽宁 沈阳 110136
- Author(s):
-
LI Yibo, LI Kun
-
College of Automation, Shenyang Aerospace University, Shenyang 110136, China
-
- 关键词:
-
步态识别; 多特征信息融合; 双视角; Procrustes均值形状; 动作能量图; 二维局部保留映射
- Keywords:
-
gait recognition; multiple feature information fusion; dual view; Procrustes mean shape; active energy image; two dimensional partial preserving projections
- 分类号:
-
TP391.41
- DOI:
-
10.3969/j.issn.1673-4785.201209033
- 文献标志码:
-
A
- 摘要:
-
针对步态识别研究中单视角识别率低、多视角算法复杂等问题,开展了双视角下的步态识别研究.考察正面视角人体的轮廓特征和侧面视角人体行走的动态特征,利用多视角步态信息互补性强的特点,分别从正面视角和侧面视角获取步态序列,预处理得到单连通人体轮廓图形,然后对正面视角提取Procrustes均值形状,侧面视角计算动作能量图(AEI)并经二维局部保留映射(2D LPP)降维,最后将2个视角下的识别结果进行融合从而获得最终的识别结果.在中科院自动化所的DatasetB数据库上进行了实验,获得了较高的识别率,达到了预期的识别效果.
- Abstract:
-
In view of low recognition rate of single view and complexity of multi view algorithm, a research was conducted examining the gait recognition under dual view. Current research on the contour characteristic of the human body in frontal view and the dynamic characteristics of human walking in side view was examined using the complementary features of the gait information under multi view. Also the gait sequences were obtained utilizing the two views respectively, and then preprocessed to obtain simply connected body silhouettes. Next, the Procrustes mean shape was extracted from the front view, and the active energy images (AEI) was calculated by side view. However, each of the AEI was projected to a low dimensional feature subspace via two dimensional local preserving projections (2D LPP). The final recognition result was obtained by fusing recognition results of two perspectives. The experiments in CASIA dataset(Dataset B) obtained a high recognition rate and achieved the expected effect of recognition.
备注/Memo
收稿日期: 2012-09-15.
网络出版日期:2013-01-25.
基金项目:国家自然科学基金资助项目(61103123).
通信作者:李昆.
E-mail: likun565@163.com.
作者简介:
李一波,男,1963年生,教授,博士生导师.主要研究方向为图像处理与模式识别、颅像鉴定、飞行器自主控制技术、工业自动化、电子与协同商务等.曾获省教学成果二等奖1项、省教学成果三等奖1项、军队级科技进步三等奖1项、省国防工业办公室科技进步二等奖1项.发表学术论文近百篇,其中被SCI检索1篇、EI检索32篇、ISTP检索13篇,CA检索8篇.出版专著1部、教材2部.
李昆,男,1986年生,硕士研究生,主要研究方向为微智能执行器与自主控制.
更新日期/Last Update:
2013-04-12