[1]徐丽莎,钱晓山,阳春华.结合GM(1,1)和LSSVM的多效蒸发过程参数预测[J].智能系统学报,2012,7(5):462-466.
 XU Lisha,QIAN Xiaoshan,YANG Chunhua.Parameter prediction of multieffect evaporation process combining GM(1,1) with LSSVM[J].CAAI Transactions on Intelligent Systems,2012,7(5):462-466.
点击复制

结合GM(1,1)和LSSVM的多效蒸发过程参数预测

参考文献/References:
[1]王晓兰,王明伟.基于小波分解和最小二乘支持向量机的短期风速预测[J].电网技术, 2010, 34(1): 179184. 
WANG Xiaolan, WANG Mingwei. Shortterm wind speed forecasting based on wavelet decomposition and least square support vector machine[J]. Power System Technology, 2010, 34(1): 179184.
[2]张华,任若恩.基于小波分解和残差GM(1,1)AR的非平稳时间序列预测[J].系统工程理论与实践, 2010, 30(6): 10161020. 
ZHANG Hua, REN Ruoen. Nonstationary time series prediction based on wavelet decomposition and remanet GM(1,1)AR[J]. Systems Engineering Theory and Practice, 2010, 30(6): 10161020.
[3]LI Derchiang, FANG Yaohwei. An algorithm to cluster data for efficient classification of support vector machines[J]. Expert Systems with Applications, 2008, 34(3): 20132018.
[4]COMAK E, ARSLAN A. A new training method for support vector machines: clustering kNN support vector machines[J]. Expert Systems with Applications, 2008, 35(3): 564568.
[5]KULKARNI A, JAYARAMAN V K, KULKARNI B D. Knowledge incorporated support vector machines to detect faults in Tennessee Eastman process[J]. Computers & Chemical Engineering, 2005, 29(10): 21282133. 
[6]MALLAT S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674693.
[7]胡昌华,李国华,刘涛,等.基于MATLAB 6.X的系统分析与设计——小波分析[M].西安:西安电子科技大学出版社, 2004: 4549.
[8]刘思峰,党耀国,方志耕,等.灰色系统理论及其应用[M].北京:科学出版社, 2004: 1213.
[9]VAPNIK V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988999.
[10]SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293300.
[11]SUYKENS J A K. Optimal control by least squares support vector machines[J]. Neural Networks, 2001, 14(1): 2325.
[12]邓兴升.统计学习理论在大地测量中的应用[D].武汉:武汉大学, 2007: 6670. 
DENG Xingsheng. The application of statistical learning theory in geodesy[D]. Wuhang: Wuhang University, 2007: 6670.
[13]CRITINANINI N, SHAWETAYLOR J. An introduction to support vector machines and other kernelbased learning methods[M]. London, UK: Cambridge University Press, 2000: 2527.
[14]邓乃扬,田英杰.支持向量机——理论、算法与拓展[M].北京:科学出版社, 2004: 1517.
相似文献/References:
[1]郭晓霞,杨慧中.小波去噪中软硬阈值的一种改良折衷法[J].智能系统学报,2008,3(3):222.
 GUO Xiao-xia,YANG Hui-zhong.An improved compromise for soft/hard thresholds in wavelet denoising[J].CAAI Transactions on Intelligent Systems,2008,3():222.
[2]吴朝阳.改进的灰色模型与ARMA模型的股指预测[J].智能系统学报,2010,5(3):277.
 WU Zhao-yang.Forecasting stock indexes based on a revised grey model and the ARMA model[J].CAAI Transactions on Intelligent Systems,2010,5():277.
[3]张毅,罗明伟,罗元.脑电信号的小波变换和样本熵特征提取方法[J].智能系统学报,2012,7(4):339.
 ZHANG Yi,LUO Mingwei,LUO Yuan.EEG feature extraction method based on wavelet transform and sample entropy[J].CAAI Transactions on Intelligent Systems,2012,7():339.
[4]李洋,焦淑红,孙新童.基于IHS和小波变换的可见光与红外图像融合[J].智能系统学报,2012,7(6):554.
 LI Yang,JIAO Shuhong,SUN Xintong.Fusion of visual and infrared images based on IHS and wavelet transforms[J].CAAI Transactions on Intelligent Systems,2012,7():554.
[5]王洪利.GM(1,N)和QSIM结合的复杂系统的定性仿真建模方法[J].智能系统学报,2013,8(4):367.[doi:10.3969/j.issn.1673-4785.201210001]
 WANG Hongli.Qualitative modeling and simulation of complex system based on the combination of GM (1, N) and QSIM[J].CAAI Transactions on Intelligent Systems,2013,8():367.[doi:10.3969/j.issn.1673-4785.201210001]
[6]李俊泽,袁小芳,张振军,等.一种基于二维GARCH模型的图像去噪方法[J].智能系统学报,2015,10(1):62.[doi:10.3969/j.issn.1673-4785.201403066]
 LI Junze,YUAN Xiaofang,ZHANG Zhenjun,et al.A method of image denoising based on two-dimensional GARCH model[J].CAAI Transactions on Intelligent Systems,2015,10():62.[doi:10.3969/j.issn.1673-4785.201403066]
[7]邓欣,肖立峰,杨鹏飞,等.融合运动想象脑电与眼电信号的机械臂控制系统开发[J].智能系统学报,2022,17(6):1163.[doi:10.11992/tis.202107042]
 DENG Xin,XIAO Lifeng,YANG Pengfei,et al.Development of a robot arm control system using motor imagery electroencephalography and electrooculography[J].CAAI Transactions on Intelligent Systems,2022,17():1163.[doi:10.11992/tis.202107042]

备注/Memo

收稿日期: 2011-11-02.
网络出版日期:2012-09-07.
基金项目:国家自然科学基金资助项目(60874069).?
通信作者:钱晓山. E-mail: qianxiaoshan@126.com.
作者简介:徐丽莎,女,1984年生,讲师,主要研究方向为复杂工业过程建模、优化与控制、嵌入式系统.
钱晓山,男,1980年生,讲师,博士研究生,主要研究方向为复杂工业过程建模、优化与控制.
阳春华,女,1965年生,教授,博士生导师,博士,中国有色金属学会计算机学术委员会秘书长,中国自动化学会理事、应用专业委员会委员、技术过程故障诊断与安全性专业委员会委员,中国人工智能学会智能控制与智能管理专业委员会委员,湖南省自动化学会常务理事.主要研究方向为复杂工业过程建模、优化控制、智能信息处理.完成或在研国家自然科学基金、国家“863”与“973”计划、国家高技术产业化等科研项目36项.曾获国家科技进步二等奖2项,省部级科技进步奖16项.申请国家发明专利19项、授权6项,申请软件著作权8项,发表学术论文300余篇,其中被SCI、EI检索110余篇.

更新日期/Last Update: 2012-11-13
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com