[1]连传强,徐昕,吴军,等.面向资源分配问题的Q-CF多智能体强化学习[J].智能系统学报,2011,6(2):95-100.
LIAN Chuanqiang,XU Xin,WU Jun,et al.Q-CF multiAgent reinforcement learningfor resource allocation problems[J].CAAI Transactions on Intelligent Systems,2011,6(2):95-100.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
6
期数:
2011年第2期
页码:
95-100
栏目:
学术论文—机器学习
出版日期:
2011-04-25
- Title:
-
Q-CF multiAgent reinforcement learningfor resource allocation problems
- 文章编号:
-
1673-4785(2011)02-0095-06
- 作者:
-
连传强,徐昕,吴军,李兆斌
-
国防科技大学 机电工程与自动化学院,湖南 长沙 410073
- Author(s):
-
LIAN Chuanqiang, XU Xin, WU Jun, LI Zhaobin
-
College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China
-
- 关键词:
-
多智能体系统; 强化学习; 资源分配; 协同控制
- Keywords:
-
multiAgent system; reinforcement learning; resource allocation; cooperation control
- 分类号:
-
TP391.1
- 文献标志码:
-
A
- 摘要:
-
多智能体强化学习算法在用于复杂的分布式系统时存在着状态空间大、学习效率低等问题.针对网络环境中的资源分配问题对多智能体强化学习算法进行了研究,将Q学习算法和链式反馈(chain feedback,CF)学习算法相结合,提出了QCF多智能体强化学习算法,利用一种称为信息链式反馈的机制实现了多智能体之间的高效协同.仿真结果表明,和已有的多智能体Q学习算法相比,该方法具有更加快速的收敛速度,同时保证了协同策略的性能优化.
- Abstract:
-
When a multiAgent reinforcement learning algorithm is used in complex distributed systems, problems such as huge state space and low learning efficiency arise. In this paper, a multiAgent reinforcement learning algorithm was studied for the resource allocation problem in a network environment. By combining the Qlearning algorithm and the chain feedback learning mechanism, a novel QCF multiAgent reinforcement learning algorithm was presented. In the QCF algorithm, multiAgent cooperation was realized based on the mechanism of information chain feedback. Simulation results show that compared with the multiAgent Qlearning algorithm in existence, the proposed algorithm in this paper has a faster convergence speed while at the same time ensures the performance optimization of cooperation policy.
备注/Memo
收稿日期:2010-03-25.
基金项目:国家自然科学基金资助项目(60774076,90820302).
通信作者:连传强.
E-mail:wzdslcq@163.com.
作者简介:
连传强,男,1986年生,硕士研究生,主要研究方向为模式识别与机器学习.
徐昕,男,1974年生,研究员,博士,主要研究方向为增强学习、自适应动态规划理论和算法、智能移动机器人、智能系统.
吴军,男,1980年生,博士研究生.主要研究方向为多机器人系统、机器学习与智能系统.
更新日期/Last Update:
2011-05-19