[1]吴一全,纪守新.灰度熵和混沌粒子群的图像多阈值选取[J].智能系统学报,2010,5(6):522-529.
WU Yi-quan,JI Shou-xin.Multithreshold selection for an image based on gray entropy and chaotic particle swarm optimization[J].CAAI Transactions on Intelligent Systems,2010,5(6):522-529.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
5
期数:
2010年第6期
页码:
522-529
栏目:
学术论文—人工智能基础
出版日期:
2010-12-25
- Title:
-
Multithreshold selection for an image based on gray entropy and chaotic particle swarm optimization
- 文章编号:
-
1673-4785(2010)06-0522-08
- 作者:
-
吴一全1,2,纪守新1
-
南京航空航天大学 信息科学与技术学院,江苏 南京210016;
2 南京大学 计算机软件新技术国家重点实验室,江苏 南京 210093
- Author(s):
-
WU Yi-quan1,2, JI Shou-xin1
-
1.School of Information Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2.State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China
-
- 关键词:
-
图像分割; 阈值选取; 灰度熵; 量化图像直方图; 多阈值; 混沌小生境粒子群优化
- Keywords:
-
image segmentation; threshold selection; gray entropy; quantified image histogram; multithreshold; particle swarm optimization of chaotic niche
- 分类号:
-
TP391.41; TN911.73
- 文献标志码:
-
A
- 摘要:
-
最大Shannon熵阈值选取方法仅仅依赖于图像灰度直方图的概率信息,而没有直接考虑类内灰度级的均匀性.为此提出了最大灰度熵的阈值选取方法.首先给出了灰度熵的定义及其单阈值选取方法,该灰度熵与现有的仅基于直方图分布的最大Shannon熵不同,直接反映了类内灰度级的均匀性;其次导出了量化图像直方图的灰度熵单阈值选取公式;最后将灰度熵单阈值选取推广到多阈值选取,提出了相应的快速递推算法,并进一步采用混沌小生境粒子群优化算法寻找最佳多阈值.实验结果表明,与最大Shannon熵单阈值选取和基于粒子群的最大Shannon熵多阈值选取方法相比,所提出方法的分割图像边缘、纹理更为准确,视觉效果明显改善.
- Abstract:
-
The method of threshold selection based on maximal Shannon entropy depends only on the probability information from a gray image histogram and does not immediately consider the uniformity of the gray scale within the cluster. Considering these facts, a method of threshold selection based on maximal gray entropy was proposed. First, gray entropy was defined and the method of single threshold selection was given. Being different from maximal Shannon entropy based only on histogram distribution, the gray entropy reflects the uniformity of the gray scale immediately within the cluster. Then, the formulae of gray entropy based single threshold selection of a quantized image histogram were derived. Finally, the method of single threshold selection based on gray entropy was extended to multithreshold selection. A corresponding fast recurring algorithm was proposed. Furthermore, a particle swarm optimization algorithm with a chaotic niche was adopted to find the best multithreshold. Many experimental results show that, compared with the methods of single threshold selection based on maximal Shannon entropy and multithreshold selection based on maximal Shannon entropy with particle swarm optimization, segmented images of the suggested method are more accurate in edge and texture, and their visual effect is improved significantly.
备注/Memo
收稿日期:2010-04-12.
基金项目:国家自然科学基金资助项目(60872065);航空科学基金资助项目(20105152026);南京大学计算机软件新技术国家重点实验室开放基金资助项目(KFKT2010B17).
通信作者:吴一全. E-mail: nuaaimage@yahoo.com.cn.
作者简介:
吴一全, 男, 1963年生, 教授, 博士, 主要研究方向为图像处理与模式识别、目标检测与跟踪、智能信息处理等. 在国内外核心刊物和国际学术会议上发表学术论文90余篇.
纪守新,男,1984年生,硕士研究生,主要研究方向为图像处理与目标检测等.
更新日期/Last Update:
2011-03-03