[1]张秀玲,逄宗鹏,李少清,等.ANFIS的板形控制动态影响矩阵方法[J].智能系统学报,2010,5(4):360-365.
ZHANG Xiu-ling,PANG Zong-peng,LI Shao-qing,et al.A dynamic influence matrix method for flatness control based on adaptivenetworkbased fuzzy inference systems[J].CAAI Transactions on Intelligent Systems,2010,5(4):360-365.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
5
期数:
2010年第4期
页码:
360-365
栏目:
学术论文—人工智能基础
出版日期:
2010-08-25
- Title:
-
A dynamic influence matrix method for flatness control based on adaptivenetworkbased fuzzy inference systems
- 文章编号:
-
1673-4785(2010)04-0360-06
- 作者:
-
张秀玲,逄宗鹏,李少清,张少宇
-
1.燕山大学 电气工程学院,河北 秦皇岛 066004;
?2.燕山大学 工业计算机控制工程河北省重点实验室,河北 秦皇岛 066004
- Author(s):
-
ZHANG Xiu-ling, PANG Zong-peng, LI Shao-qing, ZHANG Shao-yu
-
1.College of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China;
2.Key Lab of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao 066004, China
-
- 关键词:
-
板形控制; 自适应神经模糊推理系统; 影响矩阵; 聚类; 模糊
- Keywords:
-
flatness control; adaptive neurofuzzy inference system; influence matrix; clustering; fuzzy
- 分类号:
-
TP18
- 文献标志码:
-
A
- 摘要:
-
针对板形控制系统的非线性和强耦合性,以及传统效应函数法和板形静态影响矩阵法的不足,通过对大量生产实测数据的计算和分析,提出了板形控制的动态影响矩阵法.通过基于减法聚类的ANFIS(自适应神经模糊推理系统)的板形动态矩阵预测模型,在线求得不断变化的影响矩阵,兼顾了板带生产的实时性与复杂性,仿真实验验证了其有效性.
- Abstract:
-
Flatness control systems have both strong nonlinearity and coupling. Unfortunately traditional effective function methods and the static influence matrix of flatness can not effectively solve such problems. After analysis of a large volume of production data a new method was proposed, a dynamical influence matrix method for the flatness controller. Using the predictive model of the dynamic flatness matrix, and incorporating the subtractive clustering of an adaptive neurofuzzy inference system (ANFIS), the influence matrix was calculated in real time. Both the need for realtime results and the complexities of strip steel production were accommodated. Simulations confirmed the validity of the proposed method.
备注/Memo
收稿日期:2009-06-13.
基金项目:国家自然科学基金资助项目(50675186).
通信作者:张秀玲.E-mail: zxlysu@yahoo.com.cn.
作者简介:
?张秀玲,女,1968年生,教授,博士,主要研究方向为神经网络智能控制研究,获国家科技进步二等奖1项,省部级科技进步一等奖、二等奖各1项,发表学术论文60余篇.
逄宗朋,男,1983年生,硕士研究生,主要研究方向为模糊神经网络优化板形设计.
更新日期/Last Update:
2010-09-20