[1]邹阿金,张雨浓,肖秀春.Hermite混沌神经网络异步加密算法[J].智能系统学报,2009,4(5):458-462.[doi:10.3969/j.issn.1673-4785.2009.05.012]
ZOU A-jin,ZHANG Yu-nong,XIAO Xiu-chun.An asynchronous encryption algorithm based on Hermite chaotic neural networks[J].CAAI Transactions on Intelligent Systems,2009,4(5):458-462.[doi:10.3969/j.issn.1673-4785.2009.05.012]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
4
期数:
2009年第5期
页码:
458-462
栏目:
学术论文—机器学习
出版日期:
2009-10-25
- Title:
-
An asynchronous encryption algorithm based on Hermite chaotic neural networks
- 文章编号:
-
1673-4785(2009)05-0458-05
- 作者:
-
邹阿金1,2,张雨浓2,肖秀春1,2
-
1.广东海洋大学信息学院,广东湛江524088; 2. 中山大学信息与技术学院,广东广州510275
- Author(s):
-
ZOU A-jin1,2, ZHANG Yu-nong1, XIAO Xiu-chun1,2
-
1.Information College, Guangdong Ocean University, Zhanjiang 524088, China; 2.School of Information Science and Technology, Sun Yatsen University, Guangzhou 510275, China
-
- 关键词:
-
Hermite神经网络; 正交多项式; 混沌; 异步加密
- Keywords:
-
Hermite neural networks; orthogonal polynomial; chaos; asynchronous encryption
- 分类号:
-
TP183;TN918
- DOI:
-
10.3969/j.issn.1673-4785.2009.05.012
- 文献标志码:
-
A
- 摘要:
-
基于最佳均方逼近,采用Hermite正交多项式做为神经网络隐层的激励函数,引入一种新型的Hermite神经网络模型.通过神经网络权值和混沌初值产生性能接近于理论值的混沌序列,从中提取与明文等长的序列进行排序,将排序结果对明文置换后即可得密文.加密与解密信息完全隐藏于神经网络产生的混沌序列中,与混沌初值无显式关系,且只需改变混沌初值,便可实现“一次一密”异步加密,其安全性取决于混沌序列的复杂性和无法预测性.理论分析和加密实例表明,该加密算法简单易行,克服了混沌同步加密的诸多缺陷,具有良好的安全性.
- Abstract:
-
This paper introduces a new Hermite neural network model, in which orthogonal Hermite polynomials were employed as the activation functions of hidden layers of feed-forward neural networks by using best square approximation theory. By varying the chaotic initial value and regarding it as the input of the networks, new chaotic series were generated, which were close to the theoretical values. From the new chaotic series, a sub-sequence with the same length as the plaintext was extracted and sorted. Then, by replacing the sorted results with the plain-text, cipher-text was produced. In the encryption system, the information needed in encryption and decryption was hidden in the chaotic series and has no obvious relationship with the initial chaotic value. Security depends completely on the complexity and unpredictability of the chaotic sequences. By varying the initial chaotic value, we can implement asynchronous one-time pad cipher encryption. Theoretical analysis and encryption tests proved that our algorithm is useful, simple and highly secure, with many advantages that a synchronous system can never achieve.
备注/Memo
作者简介:
邹阿金,男,1963年生,硕士,副教授,中山大学2008年度访问学者.主要研究方向为神经网络、信息安全.参与多项国家自然科学基金项目、煤炭系统留学回国人员科技基金资助项目1项,发表学术论文30余篇,出版专著和编著各1部.
张雨浓,男,1973年生,教授,博士生导师,博士.主要研究方向为神经网络、机器人、高斯过程及其科学计算与优化.先后在香港中文大学、新加坡国立大学、英国Strathclyde大学和爱尔兰国立大学从事神经网络研究,多次参加和参与组织相关学术会议并担任组委会成员和主席等职务.主持国家自然科学基金项目2项、中山大学校项目2项.发表学术论文70余篇,其中被SCI检索18篇、EI检索30余篇,出版专著1部.
肖秀春,男,1976年生,讲师,博士研究生.主要研究方向为计算机图形图像处理、信号检测与智能信息处理,发表学术论文近10篇.
更新日期/Last Update:
2009-12-29