[1]陈春燕,章品正,罗立民.基于粒特征和连续Adaboost的人脸检测[J].智能系统学报,2009,4(5):446-452.[doi:10.3969/j.issn.1673-4785.2009.05.010]
 CHEN Chun-yan,ZHANG Pin-zheng,LUO Li-min.Face detection using real Adaboost on granular features[J].CAAI Transactions on Intelligent Systems,2009,4(5):446-452.[doi:10.3969/j.issn.1673-4785.2009.05.010]
点击复制

基于粒特征和连续Adaboost的人脸检测

参考文献/References:
[1]ROWLEY H, BALUJA S, KANADE T. Rotation invariant neural network-based face detection[C]//Proc of IEEE Conf on Computer Vision and Pattern Recognition. Santa Barbara, USA, 1998: 38-44.
[2]SCHNEIDERMAN H. Learning a restricted Bayesian network for object detection[C]//Proc of IEEE Conf on Computer Vision and Pattern Recognition. Washington DC, USA, 2004: 639-646.
[3]OSUNA E, FREUND R, GIROSI F. Training support vector machines: an application to face detection[C]//Proc of IEEE Conf on Computer Vision and Pattern Recognition. San Juan, Puerto Rico, 1997: 130-136.
[4]HEISELE B, SERRE T, PRENTICE S, et al. Hierarchical classification and feature reduction for fast face detection with support vector machines[J]. Pattern Recognition, 2003, 36(9): 2007-2017.
[5]VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proc of IEEE Conf on Computer Vision and Pattern Recognition. Kauai Marriott, USA, 2001: 511-518.
[6]LEVI K, WEISS Y. Learning object detection from a small number of examples: the importance of good features[C]//Proc of IEEE Conf on Computer Vision and Pattern Recognition. Washington DC, USA, 2004: 53-60.
[7]LIENHART R, MAYDT J. An extended set of Haarlike features for rapid object detection[C]//Proc of IEEE Conf on Image Processing. New York, USA, 2002: 900-903.
[8]HUANG Chang, AI Haizhou, LI Yuan, et al. High-performance rotation invariant multiview face detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(4): 671-686.
[9]ABRAMSON Y, STEUX B. YEF real-time object detection[C]//Proc of International Workshop Automatic Learning and Real-Time. Siegen, Germany, 2005: 5-13.
[10]XIAO Rong, ZHU Long, ZHANG Hongjiang. Boosting chain learning for object detection[C]//Proc of IEEE Conf on Computer Vision. Nice, France, 2003: 709-715.
[11]LI S Z, ZHANG Z Q. FloatBoost learning and statistical face detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1112-1123.
[12]BOURDEV L, BRANDT J. Robust object detection via soft cascade[C]//Proc of IEEE Conf on Computer Vision and Pattern Recognition. San Diego, USA, 2005: 236-243.
[13]HUANG Chang, AI Haizhou, WU Bo, et al. Boosting nested cascade detector for multi-view face detection[C]//Proceedings of International Conference on Pattern Recognition. Cambridge, UK, 2004: 415-418.
[14]武?? 勃,黄?? 畅,艾海舟,等. 基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展, 2005, 42(9): 1612-1621.
WU Bo, HUANG Chang, AI Haizhou, et al. A multiview face detection based on real Adaboost algorithm[J]. Journal of Computer Research and Development, 2005, 42(9): 1612-1621.
[15]XIAO Rong, ZHU Huaiyi, SUN He, et al. Dynamic cascade for face detection[C]//IEEE Intenational Conference on Computer Vision. Rio de Janeiro, Brazil, 2007: 1-8.
[16]HUANG Chang, AI Haizhou, LI Yuan, et al. Learning sparse features in granular space for multi-view face detection[C]//Proc of 7th International Conf on Automatic Face and Gesture Recognition. Southampton, UK, 2006: 401-406.
[17]NILLSON N J. Artifical Intelligence: a new Synthesis[M]. San Francisco, USA: Morgan Kaufmann, 1998: 140-161.
[18]SUNG K, POGGIO T. Example-based learning for viewbased face detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(1): 39-51.
[19]ROWLEY H, BALUJA S, KANADE T. Neural networkbased face detection[C]//Proc of IEEE Conf on Computer Vision and Pattern Recognition. San Francisco, USA, 1996: 22-38.
[20]YANG M H, KRIEGMAN D J, AHUJA N. Detection faces in images: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34-58.
[21]VIOLA P A, JONES M J. Robust real-time object detection[C]//Proc of IEEE ICCV Workshop on Statistical and Computational Theories of Vision. Vancouver, Canada, 2001: 747.

备注/Memo

作者简介:
陈春燕,女,1985年生,硕士研究生,主要研究方向为图像处理、机器视觉.

章品正,男,1976年生,讲师,主要研究方向为面部表情特征抽取与跟踪.近年来发表学术论文10余篇.

罗立民,男,1956年生,教授、博士生导师,长江学者特聘教授,九三学社中央委员,江苏省政协委员,中国电子学会生物医学电子学分会副主委,中国电子学会理事,IEEE高级会员,教育部科技委信息学部委员,东南大学理学院副院长,法国雷恩大学和上海交通大学兼职教授,IEEE EMB Magazine等国内外重要学术刊物编委.主要研究方向为图像处理、科学可视化和计算机辅助诊断与治疗.曾获江苏省科技进步2等奖、广东省科技进步2等奖、IEEE学会贡献奖等.近年来发表学术论文200余篇,撰写和参编学术著作5部.

更新日期/Last Update: 2009-12-29
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com