[1]毋? 非,封化民,申晓晔.容错粗糙模型的事件检测研究[J].智能系统学报,2009,4(2):112-117.
WU Fei,FENG Hua-min,SHEN Xiao-ye.Research on event detection based on the tolerance rough set model[J].CAAI Transactions on Intelligent Systems,2009,4(2):112-117.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
4
期数:
2009年第2期
页码:
112-117
栏目:
学术论文—人工智能基础
出版日期:
2009-04-25
- Title:
-
Research on event detection based on the tolerance rough set model
- 文章编号:
-
1673-4785(2009)02-0112-06
- 作者:
-
毋? 非1,封化民1,2,申晓晔1
-
1. 西安电子科技大学通信工程学院 ,陕西西安710071;
?2. 北京电子科技学院多媒体智能处理实验室,北京100070
- Author(s):
-
WU Fei1, FENG Hua-min1,2, SHEN Xiao-ye1
-
1. School of Telecommunication Engineering, Xidian University, Xi’an 710071,China;
2. Multimedia Intelligent Information Processing Laberatory,Beijing Electronic Science and Technology Institution, Beijing 100070, China
-
- 关键词:
-
事件检测; 粗糙集; 容错粗糙模型
- Keywords:
-
event detection; rough set; tolerance rough set model
- 分类号:
-
TP391
- 文献标志码:
-
A
- 摘要:
-
对网站发布的Web新闻内容进行必要的、合理的监督管理,是保障网络信息内容安全的重要研究内容.将现有的文本表示模型应用于Web新闻会导致文本表示的稀疏性问题和话题跟踪过程中的主题词漂移问题,一种基于容错粗糙集的文本表示模型解决了这些问题.在理论分析和实验验证的基础上,结合向量空间模型(VSM),利用特征项在文档集中协同出现,构造了特征项的容错粗糙集.然后用特征项容错粗糙集生成文档的容错粗糙模型,来扩充原先的文档表示模型.最后用特征项容错类描述文档之间的相似性关系,实现事件检测过程.实验结果证明,容错粗糙模型能够改进事件检测系统的性能.
- Abstract:
-
Proper monitoring of the content of web news is crucial to the maintenance of network content security. Current text representational models are not suitable for web news because of the sparseness of text representation and the drifting of key words in event tracking processes. To solve these problems, a modeling method for text representation based on tolerance rough sets was used to extend text representation. Following theoretical analysis and experimental verification, we constructed a tolerance rough set for feature terms by considering the vector space model (VSM) and the cooccurrences of feature terms in test sets. Then the tolerance rough set model of tests was generated using the tolerance rough set for feature terms, which extended the original text representation model. Finally, the similarities of texts were described by the feature term’s tolerance classes. Experimental results showed that the tolerance rough set model improved the performance of event detection systems.
更新日期/Last Update:
2009-05-04