[1]周本达,陈明华.随机化均匀设计混合遗传算法求解图的二划分问题[J].智能系统学报,2009,4(1):91-94.
ZHOU Ben-da,CHEN Ming-hua.Solving the 2-way graph partitioning problem using a genetic algorithm based on randomized uniform design[J].CAAI Transactions on Intelligent Systems,2009,4(1):91-94.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
4
期数:
2009年第1期
页码:
91-94
栏目:
学术论文—人工智能基础
出版日期:
2009-02-25
- Title:
-
Solving the 2-way graph partitioning problem using a genetic algorithm based on randomized uniform design
- 文章编号:
-
1673-4785(2009)01-0091-04
- 作者:
-
周本达1,陈明华2
-
1. 皖西学院 数理系,安徽 六安 237012;2. 皖西学院 计算机科学与技术系,安徽 六安 237012
- Author(s):
-
ZHOU Ben-da1,CHEN Ming-hua2
-
1.Department of Mathematics and Physics, West Anhui University, Lu’an 237012, China; 2.Department of Computer Science and Technology, West Anhui University, Lu’an 237012, China
-
- 关键词:
-
图的二划分; 遗传算法; 随机化均匀设计
- Keywords:
-
2-way graph partitioning; genetic algorithm; randomized uniform design
- 分类号:
-
TP18
- 文献标志码:
-
A
- 摘要:
-
图的二划分问题是一个典型的NP-hard组合优化问题,在许多领域都有重要应用.近年来,传统遗传算法等各种智能优化方法被引入到该问题的求解中来,但效果不理想.基于理想浓度模型的机理分析,利用随机化均匀设计抽样的理论和方法, 对遗传算法中的交叉操作进行了重新设计,并在分析图的二划分问题特点的基础上,结合局部搜索策略,给出了一个解决图的二划分问题的新的遗传算法.通过将该算法与简单遗传算法和佳点集遗传算法进行求解图的二划分问题的仿真模拟比较, 可以看出新的算法提高了求解的质量、速度和精度.
- Abstract:
-
2-way graph partitioning is a typical NPhard combinatorial optimization problem, and has widespread applications in many domains. Many intelligent optimization methods, including traditional genetic algorithms, were recently introduced to solve this problem, but the results have not been ideal. Following analysis of the mechanisms of the ideal density model, the genetic algorithm (GA) crossover operation was redesigned using the principles and methods of randomized uniform sampling design. Furthermore, a new GA for solving 2-way graph partition was formulated. Simulations which compared results from this method with simple GA and Good Point GA for solving the 2-way graph partitioning problem showed that the new GA has superior speed, accuracy, and precision.
更新日期/Last Update:
2009-03-24