[1]王书舟,伞 冶.支持向量机的训练算法综述[J].智能系统学报,2008,3(6):467-475.
 WANG Shu-zhou,SAN Ye.A survey on training algorithms for support vector machine[J].CAAI Transactions on Intelligent Systems,2008,3(6):467-475.
点击复制

支持向量机的训练算法综述

参考文献/References:
[1]VAPNIK V. The nature of statistical learning theory[M]. New York:Springer Verlag,2000.
[2]CRISTIANINI N, SHAWE T J. An introduction to support vector machine[M].New York:Cambridge University Press, 2000.
[3]DOUMPOS M, ZOPOUNIDIS C. Additive support vector machines for pattern classification[J]. IEEE Trans on Systems, Man, and Cybernetics:Part B, 2007, 37(3): 540-550.
[4]JAYADEVA, KHEMCHANDANI R, CHANDRA S. Twin support vector machines for pattern classification[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910.
[5]WU Zhili, LI Chunhung, JOSEPH K, et al. Location estimation via support vector regression[J]. IEEE Trans on Mobile Computing, 2007, 6(3): 311-321.
[6]HAO Peiyi, CHIANG J H. Fuzzy regression analysis by support vector learning approach[J]. IEEE Trans on Fuzzy Systems, 2008, 16(2): 428-441.
[7]CHANG C C, HSU C W, LIN C J. The analysis of decomposition methods for support vector machines[J]. IEEE Trans on Neural Networks, 2000, 11 (4): 1003-1008.
[8]LIN C J. On the convergence of the decomposition method for support vector machines[J]. IEEE Trans on Neural Networks, 2001, 12(6): 1288-1298. [9]NORIKAZU T, TETSUO N. Global convergence of decomposition learning methods for support vector machines[J]. IEEE Trans on Neural Networks, 2006, 17 (6): 1362-1369.
[10]LIN C J. A Formal analysis of stopping criteria of decomposition methods for support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(5): 1045-1052.
[11]HU W J, SONG Q. An accelerated decomposition algorithm for robust support vector machines[J]. IEEE Trans on Circuits and Systems, 2004, 51(5): 234-240.
[12]DONG Jianxiong, ADAM K, CHING Y S. Fast SVM training algorithm with decomposition on very large data sets[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(4): 603-618.
[13]QIAO Hong, WANG Yanguo, ZHANG Bo. A simple decomposition algorithm for support vector machines with polynomial time convergence[J]. Pattern Recognition, 2007, 40(9): 2543-2549.
[14]周水生, 詹海生, 周利华. 训练支持向量机的Huber近似算法[J]. 计算机学报, 2005, 28(10): 1664-1670.?
ZHOU Shuisheng, ZHAN Haisheng, ZHOU Lihua. A Huber approximation method for training the support vector machines[J]. Chinese Journal of Computers, 2005, 28(10): 1664-1670.
[15]业 宁, 孙瑞祥,董逸生. 多拉格朗日乘子协同优化的SVM快速学习算法研究[J]. 计算机研究与发展, 2006, 43(3): 442-448.
YE Ning, SUN Ruixiang, DONG Yisheng. SVM fast training algorithm research based on multilagrange multiplier[J]. Journal of Computer Research and Development, 2006, 43(3): 442-448.
[16]杨晓伟, 路 节, 张广全. 一种高效的最小二乘支持向量机分类器剪枝算法[J]. 计算机研究与发展, 2007, 44(7): 1128-1136.
YANG Xiaowei , LU Jie , ZHANG Guangquan. An effective pruning algorithm for least squares support vector machine classifier[J]. Journal of Computer Research and Development, 2007, 44(7): 1128-1136.
[17]PLATT J C. Fast training of support vector machines using sequential minimal optimization[C]//Advances in Kernel Methods-Support Vector Learning.Cambridge, MA:MIT Press, 1999: 185-208.
[18]KEERTHI S, SHEVADE S, BHATTCHARYYA C, et al. Improvements to Platt’s SMO algorithm for SVM classifier design[J]. Neural Computation, 2001, 13(3): 637-649.
[19]KEERTHI S, GILBERT E. Convergence of a generalized SMO algorithm for SVM classifier design[J]. Machine Learning, 2002, 46(1/2/3): 351-360.
[20]LIN C J. Asymptotic convergence of an SMO algorithm without any assumptions[J]. IEEE Trans on Neural Networks, 2002, 13(1): 248-250.
[21]SMOLA A, SCH〖AKO¨〗LKOPF B. A tutorial on support vector regressions[J]. Statistics and Computing, 2004, 14(8): 199-222.
[22]SHEVADE S K, KEERTHI S S, BHATTACHARYYA C. Improvements to SMO algorithm for SVM regression[J]. IEEE Trans on Neural Networks, 2000,11(5): 1188-1193. 
[23]FLAKE G W, LAWRENCE S. Efficient SVM regression training with SMO[J]. Machine Learning, 2002, 46(1/2/3): 271-290.
[24]VOGT M. SMO algorithms for support vector machines without bias term[R]. Darmstadt,Germany:Institute of Automatic Control Laboratory for Control Systems and Process Automation, Technische Univ.Darmstadt,2002.
[25]KEERTHI S S, SHEVADE S K. SMO algorithm for least squares SVM formulations[J]. Neural Computation, 2003, 15(2): 487-507.
[26]ZENG Xiangyan, CHEN Xuewen. SMObased pruning methods for sparse least squares support vector machines[J]. IEEE Trans on Neural Networks, 2005, 16 (6): 1541-1546.
[27]NORIKAZU T, TETSUO N. Rigorous proof of termination of SMO algorithm for support vector machines[J]. IEEE Trans on Neural Networks, 2005, 16(3): 774-776.
[28]GUO J, TAKAHASHI N, NISHI T. A novel sequential minimal optimization algorithm for support vector regression[C]//Proceedings of the 13th International Conference on Neural Information Processing. Hong Kong, China, 2006, 4234: 827-836.
[29]TAKAHASHI N, GUO J, NISHI T. Global convergence of SMO algorithm for support vector regression[J]. IEEE Trans on Neural Networks, 2008, 19(6): 971-982.
[30]CAO L J, KEERTHI S S, ONG C J. Developing parallel sequential minimal optimization for fast training support vector machine[J]. Neurocomputing, 2006, 70(3): 93-104. 
[31]CAO L J, KEERTHI S S, ONG C J, et al. Parallel sequential minimal optimization for the training of support vector machines[J]. IEEE Trans on Neural Networks, 2006, 17(4): 1039-1049.
[32]CHEN P H, FAN R E, LIN C J. A study on SMOtype decomposition methods for support vector machines[J]. IEEE Trans on Neural Networks, 2006, 17(4): 893-908.
[33]BO Liefeng, JIAO Licheng, WANG Ling. Working set selection using functional gain for LS-SVM[J]. IEEE Trans on Neural Networks, 2007, 18(5): 1541-1544.
[34]孙 剑, 郑南宁, 张志华. 一种训练支撑向量机的改进贯序最小优化算法[J]. 软件学报, 2002, 13(10): 2007-2012.
SUN Jian, ZHENG Nanning, ZHANG Zhihua. An improved sequential minimization optimization algorithm for support vector machine training[J]. Journal of Software, 2002, 13(10): 2007-2012.
[35]李建民,张 钹,林福宗. 序贯最小优化的改进算法[J]. 软件学报, 2003,14(5): 918-924.
LI Jianmin, ZHANG Bo, LIN Fuzong. An improvement algorithm to sequential minimal optimization[J]. Journal of Software, 2003, 14(5): 918-924.
[36]张浩然, 韩正之. 回归支持向量机的改进序列最小优化学习算法[J]. 软件学报, 2003, 14(12): 2006-2013.
?ZHANG Haoran, HAN Zhengzhi. An improved sequential minimal optimization learning algorithm for regression support vector machine[J]. Journal of Software, 2003, 14(12): 2006-2013.
?[37]朱齐丹,张 智,邢卓异.支持向量机改进序列最小优化学习算法[J].哈尔滨工程大学学报,2007,28(2):183-188.
ZHU Qidan,ZHANG Zhi,XING Zhuoyi.Improved SMO learning method of support vector machine [J].Journal of Harbin Engineering University,2007,28(2):183-188.
[38]张浩然, 汪晓东. 回归最小二乘支持向量机的增量和在线式学习算法[J]. 计算机学报, 2006, 29(3):400-406.
ZHANG Haoran, WANG Xiaodong. Incremental and online learning algorithm for regression least squares support vector machine[J]. Chinese Journal of Computers, 2006, 29(3): 400-406.
[39]杨 静,张健沛,刘大昕.基于多支持向量机分类器的增量学习算法研究[J].哈尔滨工程大学学报,2006,27(1):103-106.
YANG Jing,ZHANG Jianpei,LIU Daxin.Research on incremental learning algorithm with multiple support vector machine classifiers [J].Journal of Harbin Engineering University,2006,27(1):103-106.
[40]汪 辉. 增量型支持向量机回归训练算法及在控制中的应用[D]. 杭州: 浙江大学, 2006.
?WANG Hui.Incremental support vector machine regression training algorithm and its application in control [D].Hangzhu:zhejiang University,2006.
[41]MA J H, THEILER J, PERKINS S. Accurate online support vector regression[J]. Neural Computation, 2003, 15(11): 2683-2703.
[42]VOJISLAV K, MICHAEL V, HUANG Teming. On the equality of kernel AdaTron and sequential minimal optimization in classification and regression tasks and alike algorithms for kernel machines[C]//European Symposium on Artificial Neural Networks.Bruges,Belgium:Dside Publications,2003: 215-222.
[43]YAAKOV E, SHIE M, RON M. Sparse online greedy support vector regression [C]//Machine learning:ECMI 2002.Berlin:Springer-Verlag,2002:84-96.
[44]KIVINEN J, SMOLA A J, WILLIAMSON R C. Online learning with kernels[J]. IEEE Trans on Signal Processing, 2004, 52(8): 2165-2176.
[45]SMALE S, YAO Y. Online learning algorithms[J]. Foundations of Computational Mathematics, 2006, 6(3): 145-170.
[46]YING Yiming, ZHOU Dingxuan, Online regularized classification algorithms[J]. IEEE Trans on Information Theory, 2006, 52(11): 4775-4788.
[47]BIANCHI N C, CONCONI A, GENTILE C. On the generalization ability of online learning algorithms[J]. IEEE Trans on Information Theory, 2004, 50(9): 2050-2057.
[48]BIANCHI N C, GENTILE C. Improved risk tail bounds for online algorithms[J]. IEEE Trans on Information Theory, 2008, 54(1): 386-390.
[49]STEINWART I. Sparseness of support vector machines[J]. Journal of Machine Learn Research, 2003, 4(3): 1071-1105.
[50]刘向东, 陈兆乾. 一种快速支持向量机分类算法的研究 [J]. 计算机研究与发展, 2004, 41(8): 1327-1332. 
?LIU Xiangdong, CHEN Zhaoqian. A fast classification algorithm of support vector machines[J]. Journal of Computer Research and Development, 2004, 41(8): 1327-1332.
[51]WU M, SCH〖AKO¨〗LKOPF B, BAKIR G. A direct method for building sparse kernel learning algorithms[J]. Journal of Machine Learning Research, 2006, 7(4): 603-624.
[52]NGUYEN D, HO T. An efficient method for simplifying support vector machines[C]//International Conference on Machine Learning. Bonn, Germany, 2005: 617-624.
[53]NGUYEN D. HO T. A bottomup method for simplifying support vector solutions[J]. IEEE Trans on Neural Networks, 2006, 17(3): 792-796.
[54]KEERTHI S S, CHAPELLE O, DECOSTE D. Building support vector machines with reduced classifier complexity[J]. Journal of Machine Learning Research, 2006, 7 (7): 1493-1515.
[55]LI Qing, JIAO Licheng, HAO Yingjuan. Adaptive simplification of solution for support vector machine[J]. Pattern Recognition,2007, 40(3): 972-980.
[56]SUMEET A, SARADHI V V, HARISH K. Kernelbased online machine learning and support vector reduction[J]. Neurocomputing, 2008, 71 (9): 1230-1237.
[57]CRAMMER K, KANDOLA J, SINGER Y. Online classification on a budget[C]//Advances in Neural Information Processing Systems.Whistler,Canada,2003: 225-232.
[58]WESTON J, BORDES A, BOTTOU L. Online (and offline) on an even tighter budget[C]//Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics.Barbados, 2005:413-420.
[59]DEKEL O, SHWARTZ S S, SINGER Y. The forgetron: A kernel based perceptron on a fixed budget[C]//Advances in Neural Information Processing Systems.Vancouver,Canada,2005: 259-266.
[60]OFER D, YORAM S.Support vector machines on a budget[C]//Advances in Neural Information Processing Systems.Whistler,Canada,2006: 345-352.
[61]JOACHIMS T. Training linear SVMs in linear time[C]//International Conference on Knowledge Discovery and Data Mining(KDD).New York, USA, 2006: 217- 226.
[62]SHWARTZ S S, SINGER Y, SREBRO N. Pegasos: Primal estimated sub gradient solver for SVM[C]//Proceedings of the Twenty Fourth International Conference on Machine Learning (ICML2007):Corvalis,USA, 2007: 807-814.
[63]SMOLA A J, VISHWANATHAN S V N, QUOC V L. Bundle methods for machine learning[C]//Advances in Neural Information Processing Systems.Vancour,Canada,2008.
[64]CHEN P H, LIN C J, SCHLKOPF B. A tutorial on v-support vector machines[J]. Applied Stochastic Models in Business and Industry, 2005, 21(2): 111-136.
[65]KAZUSHI I. Effects of kernel function on v-support vector machines in extreme cases[J]. IEEE Trans on Neural Networks, 2006, 17(1): 1-9.
[66]MANGASARIAN O L, WILD E W. Multisurface proximal support vector machine classification via generalized eigenvalues[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(1): 69-74.
[67]LEE Y J, HUANG S Y. Reduced support vector machines: a statistical theory[J]. IEEE Trans on Neural Networks, 2007, 18(1): 1-13.
[68]ANTHONY K, PHILIPPE D W. Comments on “pruning error minimization in least squares support vector machines”[J]. IEEE Trans on Neural Network, 2007, 18(2): 606-609.
[69]JIAO Licheng, BO Liefeng, WANG Ling. Fast sparse approximation for least squares support vector machine[J]. IEEE Trans on Neural Network, 2007, 18(3): 685-697. 
[70]WANG Defeng, DANIEL S Y, ERIC C C T, Weighted mahalanobis distance kernels for support vector machines[J]. IEEE Trans on Neural Networks, 2007, 18(5): 1453-1462.
[71]DU Shuxin, CHEN Shengtan. Weighted support vector machine for classifications[C]//IEEE International Conference on Systems, Man and Cybernetics. Hawaii, USA,2005, 4: 3866-3871.
[72]CAWLEY G C. An empirical evaluation of the fuzzy kernel perceptron[J]. IEEE Trans on Neural Networks, 2007, 18(3): 935-937.
[73]HAO P Y, CHIANG J H. Fuzzy regression analysis by support vector learning approach[J]. IEEE Trans on Fuzzy Systems, 2008, 16(2): 428-441.
[74]CHUANG C C, SU S F, JENG J T, et al. Robust support vector regression networks for function approximation with outliers[J]. IEEE Trans on Neural Networks, 2002, 13(6): 1322-1330.
[75]TRAFALIS T B, GILBERT R C. Robust classification and regression using support vector machines[J]. European Journal of Operational Research, 2006, 173 (3): 893-909.
[76]MITRA P, MURTHY C A, PAL S K. A probabilistic active support vector learning algorithm[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26 (3): 413- 418.
[77]TSANG I W, KWOK J T, ZURADA J M. Generalized core vector machines[J]. IEEE Trans on Neural Networks, 2006, 17(5): 1126-1140.
[78]ZANNI L, SERAFINI T, ZANGHIRATI G. Parallel software for training large scale support vector machines on multiprocessor systems[J]. Journal of Machine Learning Research,2006, 7(7): 1467-1492.
[79]赵春晖, 陈万海, 郭春燕. 多类支持向量机方法的研究现状与分析[J]. 智能系统学报, 2007, 2(4): 11-17.
ZHAO Chunhui, CHEN Wanhai, GUO Chunyan. Research and analysis of methods for multiclass support vector machines[J]. CAAI Transactions on Intelligent Systems, 2007, 2(4): 11-17.
[80]THEODORIDIS S, MAVROFORAKIS M. Reduced convex hulls: a geometric approach to support vector machines[J]. IEEE Signal Processing Magazine, 2007, 24(3): 119-122.
[81]BRUZZONE L, CHI M, MARCONCINI M. A novel transductive SVMs for semi-supervised classification of remote sensing images[J]. IEEE Trans on Geoscience and Remote Sensing, 2006, 44(11): 3363-3373.
[82]ASTORINO A, FUDULI A. Nonsmooth optimization techniques for semisupervised classification[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(12): 2135-2142.
相似文献/References:
[1]陈小娥,陈昭炯.多类SVM在图像艺术属性分类中的应用研究[J].智能系统学报,2009,4(2):157.
 CHEN Xiao-e,CHEN Zhao-jiong.An application of multiclass SVM in the classification of artistic attributes of images[J].CAAI Transactions on Intelligent Systems,2009,4():157.
[2]黄剑华,唐降龙,刘家锋,等.一种基于Homogeneity的文本检测新方法[J].智能系统学报,2007,2(1):69.
 HUANG Jian-hua,TANG Xiang-long,LIU Jia-feng,et al.A new method for text detection based on Homogeneity[J].CAAI Transactions on Intelligent Systems,2007,2():69.
[3]张 亮,朱振峰,赵 耀,等.基于镜头的鲁棒视频广告检测[J].智能系统学报,2007,2(2):83.
 ZHANG Liang,ZHU Zhen-feng,ZHAO Yao,et al.Video commercial detection based on the robustness of sho t[J].CAAI Transactions on Intelligent Systems,2007,2():83.
[4]赵春晖,陈万海,万? 建.一种改进的多类支持向量机超光谱图像分类方法[J].智能系统学报,2008,3(1):77.
 ZHAO Chun-hui,CHEN Wan-hai,WAN jian.An improved hyperspectral image classification method for? a multiclass support vector machine[J].CAAI Transactions on Intelligent Systems,2008,3():77.
[5]杨志豪,洪 莉,林鸿飞,等.基于支持向量机的生物医学文献蛋白质关系抽取[J].智能系统学报,2008,3(4):361.
 YANG Zhi-hao,HONG L i,L IN Hong-fei,et al.Extraction of information on prote in2prote in interaction from biomedical literatures using an SVM[J].CAAI Transactions on Intelligent Systems,2008,3():361.
[6]刘? 琚,乔建苹.基于学习的超分辨率重建技术[J].智能系统学报,2009,4(3):199.
 LIU Ju,QIAO Jian-ping.Learningbased superresolution reconstruction[J].CAAI Transactions on Intelligent Systems,2009,4():199.
[7]刘 胜,李高云,江 娜.SVM性能的免疫鱼群多目标优化研究[J].智能系统学报,2010,5(2):144.
 LIU Sheng,LI Gao-yun,JIANG Na.Multiobjective optimization of an immune fish swarm algorithm to improve support vector machine performance[J].CAAI Transactions on Intelligent Systems,2010,5():144.
[8]杨振兴,刘久富,孙 琳.不变量的程序潜在错误预测[J].智能系统学报,2010,5(4):327.
 YANG Zhen-xing,LIU Jiu-fu,SUN Lin.Using invariants to predict the potential for errors in programs[J].CAAI Transactions on Intelligent Systems,2010,5():327.
[9]古丽娜孜,孙铁利,伊力亚尔,等.一种基于主动学习支持向量机哈萨克文文本分类方法[J].智能系统学报,2011,6(3):261.
 GU Linazi,SUN Tieli,YI Liyaer,et al.An approach to the text categorization of the Kazakh language based on an active learning support vector machine[J].CAAI Transactions on Intelligent Systems,2011,6():261.
[10]何世钊,杨宣访,陈晓娟.支持向量机与BP网络在火灾图像探测上的比较[J].智能系统学报,2011,6(4):339.
 HE Shizhao,YANG Xuanfang,CHEN Xiaojuan.Comparisons between a support vector machine and BP neural network for video image fire detection[J].CAAI Transactions on Intelligent Systems,2011,6():339.
[11]陈晓华,刘大莲,田英杰,等.可拓支持向量分类机[J].智能系统学报,2018,13(1):147.[doi:10.11992/tis.201610019]
 CHEN Xiaohua,LIU Dalian,TIAN Yingjie,et al.Extension support vector classification machine[J].CAAI Transactions on Intelligent Systems,2018,13():147.[doi:10.11992/tis.201610019]

备注/Memo

收稿日期:2008-06-30.
基金项目:国家自然科学基金资助项目(60474069).
作者简介:
王书舟,男,1972年生,博士研究生,主要研究方向为支持向量机建模、直升机控制与仿真.发表学术论文多篇,6篇被EI检索;伞冶,男,1951年生,教授,博士生导师,中国系统仿真学会理事,主要研究方向为复杂大系统的系统控制与仿真.获国家科技进步二等奖2项,三等奖1项,省部级科技进步奖多项.发表学术论文多篇,40余篇被EI收录.

更新日期/Last Update: 2009-04-03
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com