[1]何 清,史忠植.基于超曲面的分类算法研究进展[J].智能系统学报,2007,2(6):1-7.
 HE Qing,SHI Zhong-zhi.Research advances in classification algorithm based on hy per-surface[J].CAAI Transactions on Intelligent Systems,2007,2(6):1-7.
点击复制

基于超曲面的分类算法研究进展

参考文献/References:
[1] VAPNIK V. The nature of statistical learning theory[M]. New York: Sprin gerVerlag, 1995. 
[2]VALIANT L G. A theory of the learnable[J]. Communications of the ACM, 1 984, 27(11): 1134-1142. 
[3]BLUMER A, EHRENFEUCHT A, HASSLER D, et al. Classifying learnable geometri c concepts with the VapnikChervonenkis dimension[A]. Proceedings of the 19th A nnual ACM Symposium on Theory of Computing[C]. Berkeley, US, 1986.
[4]DANA A . Computational learning theory: survey and selected bibliog ra phy[A]. Proceedings of the Twentyfourth Annual ACM Symposium on Theory of Co mputing[C]. [S.l.],1992.
[5]DUDA R O, HART P E. Pattern classification and scene analysis[M]. New Y ork: John Wiley & Sons, 1973. 
[6]DUDA R O, HART P E, STOCK D G. 模式分类[M]. 北京:机械工业出版社,2003. 
[7]MENDELSON S. A few notes on statistical learning theory[R]. Advanced Le ctures on Machine Learning, LNAI 2600, 2003.
[8】张文生,丁 辉,王 珏. 基于邻域原理计算海量数据支持向量的研究[J]. 软件学报,2001,12(5): 711-720. 
?ZHANG Wensheng, DING Hui, WANG Jue. Study on computing the support vectors of ma ssive data based on neighborhood principle[J]. Journal of Software, 2001, 12( 5):711-720.
[9]TAO Q, WANG J. Kernel projection algorithm for largescale SVM pro blems[J]. Journal of Computer Science Technology, 2002, 17 (5): 556-564.
[10] TAO Qing, WU Gaowei, WANG Jue. A generalized S–K algorithm for learning SVM classifiers[J]. Pattern Recognition Letters, 2004, 25(10): 1165-1171.
[11]许建华, 张学工, 李衍达. 一种基于核函数的非线性感知器算法[J]. 计算机学报, 2002,25(7): 689-695
. XU Jianhua, ZHANG Xuegong, LI Yanda. A nonlinear perceptron algorithm based on k ernel functions[J]. Chinese Journal of Computers, 2002, 25(7): 689-695.
[12]ZHANG Ling, ZHANG Bo. A geometrical representation of McCulloch P itts neu ral model and its applications[J]. IEEE Transactions on Neural Networks, 1999, 10(4): 925-929.
[13]吴 涛,张 铃,张燕平.机器学习中的核覆盖算法[J].计算机学报,2005,2 8(8):1295-1301.
?WU Tao, ZHANG Ling, ZHANG Yanping. Kernel covering algorithm for machine learnin g[J]. Chinese Journal of Computers, 2005, 28(8): 1295-1301.
[14]陶 品,张 钹,叶 榛.构造型神经网络双交叉覆盖增量学习算法[J]. 软件学报,2003,14(2):194-201.
?TAO Pin, ZHANG Bo, YE Zhen. An incremental bicovering learning algorithm for con structive neural network[J]. Journal of Software, 2003, 14(2): 194-201.
[15]张 铃,张 钹,殷海风. 多层前向网络的交叉覆盖设计算法[J]. 软件学报,1999,10(7):737-742. 
?ZHANG Ling, ZHANG Bo, YIN Haifeng. An alternative covering design algorithm of m ultilayer neural networks[J]. Journal of Software, 1999, 10(7): 737-742.
[16] 周志华,曹存根.神经网络及其应用[M].北京:清华大学出版社,2004.
[17]王守觉.仿生模式识别(拓扑模式识别) ——一种模式识别新模型的理论与应用[J]. 电子学报, 2002,30(10): 1417-1420. 
WANG Shoujue. Bionic (topological) pattern recognition—a new model of patter n recognition theory and its applications[J]. Acta Electronica Sinica, 2002, 30(10): 1417-1420.
[18]WANG S J, QU Y F, LI W J. Face recognition: biomimetic pattern re cognition vs traditional recognition[J]. Acta Electronica Sinica, 2004, 32(7): 1057-10 61. 
[19]CAO W M, HAO F, WANG S J. The application of DBF neural networks for obj ec t recognition[J]. Information SciencesInformatics and Computer Science: An I nternational Journal, 2004, 160(1-4): 153-160
[20]王守觉,王柏南.人工神经网络的多维空间几何分析及其理论[J].电子学报 ,2002,30(1):1-4. 
?WANG Shoujue, WANG Bainan. Analysis and theory of highdimension space geometry for artificial neural networks[J]. Acta Electronica Sinica,2002, 30(1): 1-4 
[21]XU Zongben, MENG Deyu, JING Wenfeng. A new approach for classific ation: vi sual simulation point of view[A]. Proceedings of the ISNN 2005[C]. Spring Verlag, 2005.
[22]张 涌,朱 洪.一类弱集合覆盖问题的近似算法[J]. 计算机学报, 2005, 28(9):1497-1500.
ZHANG Yong, ZHU Hong. Approximation algorithms for the problems of weak set cove r[J]. Chinese Journal of Computers, 2005, 28(9): 1497-1500
[23]HE Qing, SHI Zhongzhi, REN Li’an. The classification method base d on hype r surface[A].Proceedings of the IEEE International Joint Conference on Neural Networks[C].Hawaii, 2002.
[24]HE Qing, SHI Zhongzhi, REN Li’an. The multiclass classification metho d i n large database based on hyper surface[A]. Proceedings of the International Conference on Machine Learning and Application[C]. Las Vegas, 2002.
[25]何 清,任力安,史忠植. 基于超曲面的海量数据直接分类法[J].计算机学报,2003,26(2):206-211. 
?HE Qing, REN Li’an, SHI Zhongzhi. The large data direct classifying method base d on hyper surface[J]. Chinese Journal of Computers, 2003, 26(2):206-211.
[26]HE Qing, Shi Zhongzhi, REN Li’an,et al. A novel classification m ethod bas ed on hypersurface[J]. International Journal of Mathematical and Computer Mode ling, 2003, 38:395-407.
[27]HE Qing, ZHAO Xiurong, SHI Zhongzhi. Clssification based on dimension tr an sposition for high dimention data[J]. Soft Computing, 2007, 11(4): 329-334.
[28]ZHAO Xiurong, HE Qing, SHI Zhongzhi. Hyper surface classifier ensemble fo r high dimensional data sets[A]. Proceedings of the 3rd International Symposium on Neural Networks (ISNN 2006)[C]. Berlin: SpringerVerlag, 2006.
[29]DASARATHY B V. Minimal consistent set (MCS) identification for optimal n ea rest neighbor decision systems design [J]. IEEE Trans Syst, Man, Cybern, 199 4,2 4 (3) :511 - 517.
[30]HANSEN L K, SALAMON P.Neural network ensembles[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1990,12(10): 993-1001.
[31]ZHOU Zhihua WU Jianxin JIANG Yuan,et al.Genetic algorithm based selectiv e neural network ensemble[A]. Proceedings of the 17th International Joint Confe rence on Artificial Intelligence[C].Seattle, US, 2001.
[32]ZHOU Z H, WU J, TANG W. Ensembling neural networks: many could be better than all [J]. Artificial Intelligence, 2002, 137(1-2): 239-263.
[33]GALLANT S I. Connectionist expert systems[J]. Communications of the AC M, 1988, 31(2): 152-169. 
[34]SETIONO R, LIU H. Understanding neural networks via rule extraction[A]. Pr oceedings of the 14th International Joint Conference on Artificial Intelligence [C]. Montreal, Canada, 1995. 
[35]WU X. Knowledge acquisition from databases[M]. Norwood, 1995. 
[36]ALEXANDER J A, MOZER M C. Templatebased procedures for neural network interpretation[J]. Neural Networks, 1999, 12(3): 479-498
[37]周志华,曹存根.神经网络及其应用[M].北京:清华大学出版社,2004.
[38】ZHOU Z H. Rule extraction: using neural networks or for neural ne tworks[J].Journal of Computer Science and Technology, 2004, 19(2): 24-253.
[39]ZHOU Z H, JIANG Y, CHEN S F. A general neural framework for classificati on rule mining[J]. International Journal of Computers, Systems and Signals, 2000 , 1(2): 154-168
[40】周志华, 陈世福. 神经网络规则抽取[J]. 计算机研究与发展, 2002, 39(4 ): 398-405.
?ZHOU Zhihua, CHEN Shifu. Rule extraction from neutral networks[J]. Journal of Computers Research and Development, 2002, 39(4):398-405.
[41]周志华, 陈世福. 神经网络集成[J]. 计算机学报, 2002, 25(1): 1-8.
ZHOU Zhihua, CHEN Shifu. Neural network ensemble[J]. Chinese Jornal of Comput ers,2002, 25(1):1-8.
[42]ZHOU Z H, JIANG Y, CHEN S F. Extracting symbolic rules from train ed neural networks[J]. AI Communications, 2003, 16(1): 3-15.
[43]ANDREWS R, DIEDERICH J, TICKLE A B. Survey and critique of techniques fo r extracting rules from trained artificial neural networks[J]. KnowledgeBased Systems, 1995, 8(6): 373-389.
[44]JOHN S T,ROBERT C,WILLIAMSON P. Generalization performance of classifier s in terms of observed covering numbers fischer[A]. Proceedings of the EuroC OLT’99[C]. Berlin: SpringerVerlag, 1999.
[45]王 珏,石纯一. 机器学习研究[J].广西师范大学学报(自然科学版), 2003 ,21(2):1-15. 
?WANG Jue, SHI Chunyi. Investigations on machine learning[J]. Journal of Guangx i Nor mal University (Natural Science Edition), 2003, 21(2):1-15.
[46]HE Qing, ZHAO Xiurong, SHI Zhongzhi. Sampling based on minimal consisten t subset for hyper surface classfication [A]. Proceedings of the Sixth Interna tional Cenference on Machine Learning and Cybernetics [C]. Hong Kong, 2007.
[47]HE Qing, ZHUANG Fuzhen, ZHAO Xiurong, et al. Enhanced algorit h m performance for classification based on hyper surface using bagging and adaboost [A]. Proceedings of the Sixth International Conference on Machine Learning and C ybernetics[C]. Hong Kong, 2007.
[48]HE Qing, ZHAO Xiurong, SHI Zhongzhi . A cognitive data visualization m et hod based on hyped surface[A]. Proc 6th IEEE Int Conf on Cognitive Informatics (ICCIO07)[C]. [S.l.], 2007.
[49]HE Qing, ZHAO Xiurong, LUO Ping,et al. Combination methodologies of m ul tiAgent hyper surface classifiers: design and implementation issues [A]. LNA I 4476[C].Berlin: SpringerVerlag, 2007.
相似文献/References:
[1]赵春晖,张燚.相关向量机分类方法的研究进展与分析[J].智能系统学报,2012,7(4):294.
 ZHAO Chunhui,ZHANG Yi.Research progress and analysis on methods for classification of RVM[J].CAAI Transactions on Intelligent Systems,2012,7():294.
[2]郭龙伟,关欣,李锵.基于测度学习支持向量机的钢琴乐谱难度等级识别[J].智能系统学报,2018,13(2):196.[doi:10.11992/tis.201612012]
 GUO Longwei,GUAN Xin,LI Qiang.Recognition of difficulty level of piano score based on metric learning support vector machine[J].CAAI Transactions on Intelligent Systems,2018,13():196.[doi:10.11992/tis.201612012]
[3]程麟焰,胡峰.基于模糊超网络的知识获取方法研究[J].智能系统学报,2019,14(3):479.[doi:10.11992/tis.201804055]
 CHENG Linyan,HU Feng.Fuzzy hypernetwork-based knowledge acquisition method[J].CAAI Transactions on Intelligent Systems,2019,14():479.[doi:10.11992/tis.201804055]
[4]刘牧雷,徐菲菲.基于三支决策的序列数据代价敏感分类算法[J].智能系统学报,2019,14(6):1255.[doi:10.11992/tis.201905049]
 LIU Mulei,XU Feifei.A sequence data, cost-sensitive classification algorithm based on three-way decisions[J].CAAI Transactions on Intelligent Systems,2019,14():1255.[doi:10.11992/tis.201905049]

备注/Memo

收稿日期:2007-01-10.
基金项目:
国家自然科学基金资助项目(60435010,60675010);
国家重点基础研究发展计划资助项目(2006AA01Z128);
北京市自然科学基金资助项目(40520 25).
作者简介:
?何 清, 1965年生,教授,博士生导师,主要研究方向为人工智能、数据挖掘、机器学习、模糊集理论,发表学术论文60多篇.
E-mail:heq@ics.ict.ac.cn.
史忠植,1944年生,研究员,博士生导师,主要研究方向为人工智能、多主体系统、数据挖掘、机器学习、知识工程等.1979年、1998年、2001年均获中国科学院科技进步二等奖,199 4年获中国科学院科技进步特等奖,2002年获国家科技进步二等奖,发表学术论文400多篇,出版专著5部.
?E-mail:shizz@ics.ict.ac.cn.

更新日期/Last Update: 2009-05-08
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com