[1]杨春玲,王来来,朱 敏.采用改进的粒子群算法训练CNNE模型[J].智能系统学报,2007,2(3):67-72.
YANG Chun-ling,WANG Jian-lai,ZHU Min.Using the improved particle swarm optimization to train the CNNE model[J].CAAI Transactions on Intelligent Systems,2007,2(3):67-72.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
2
期数:
2007年第3期
页码:
67-72
栏目:
学术论文—机器学习
出版日期:
2007-06-25
- Title:
-
Using the improved particle swarm optimization to train the CNNE model
- 文章编号:
-
1673-4785(2007)03-0074-06
- 作者:
-
杨春玲,王来来,朱 敏
-
哈尔滨工业大学电气工程及自动化学院,黑龙江哈尔滨150001
- Author(s):
-
YANG Chun-ling,WANG Jian-lai ,ZHU Min
-
Electrical Engineering, Harbin Institute of Technology, Harbin , 150001, China
-
- 关键词:
-
CNNE模型; 粒子群; 梯度
- Keywords:
-
CNNE model; particle swarm optimization; gradient
- 分类号:
-
TP183
- 文献标志码:
-
A
- 摘要:
-
提出用人工智能算法——粒子群优化算法(PSO)对CNNE模型进行训练,并针对标准粒子群算法易限于局部极小点的局限性,采用了一种带有梯度加速的粒子群算法,通过引入梯度信息来影响粒子速度的更新.为防止陷入局部最优,在群体最优信息陷入停滞时,对部分粒子进行重新初始化,从而保持群体的活性,减小群体陷入局优的可能性.采用粒子群算法训练的CNNE模型较原来的分布式最速下降法而言,在保证精度的前提下,提高了算法的收敛速度,解决了发射率的在线实时测量问题.
- Abstract:
-
An artificial intelligence algorithm - particle swarm optimization (PSO) were proposed to train the CNNE model. Aiming at the limitation of the sta ndard particle swarm optimization can be easily restricted in the local optimum point, a kind of particle swarm optimization(PSO)algorithm with gradient acceler ation is adopted by adding gradient information to influence the update of veloc ities of the particles. When the optimum information of the swarm is stagnant, s ome particles in the population are initialized again to reduce the possibility of trapping in local optimum. Comparing with the step steepest descent algorithm , using the particle swarm optimization algorithm to train the CNNE model improv es the speed of convergence of the algorithm on the premise of keeping precision , which solves the online realtime measurement of emissivity.
更新日期/Last Update:
2009-05-07