[1]孙正兴,张尧烨,李? 彬.基于线性规划分类器的相关反馈技术[J].智能系统学报,2007,2(3):34-38.
SUN Zheng-xing,ZHANG Yao-ye,LI Bin.Applying relevance feedback with a linear programming classifier[J].CAAI Transactions on Intelligent Systems,2007,2(3):34-38.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
2
期数:
2007年第3期
页码:
34-38
栏目:
学术论文—机器学习
出版日期:
2007-06-25
- Title:
-
Applying relevance feedback with a linear programming classifier
- 文章编号:
-
1673-4785(2007)03-0034-05
- 作者:
-
孙正兴,张尧烨,李? 彬
-
南京大学计算机软件新技术国家重点实验室, 江苏南京210093
- Author(s):
-
SUN Zheng-xing, ZHANG Yao-ye, LI Bin
-
State Key Lab for Novel Software Technology, Nanjing University, Nanjing 210093 , China
-
- 关键词:
-
相关反馈; 特征选择; 线性规划分类器; 草图检索
- Keywords:
-
relevance feedback; feature selection; linear programming classifier; sketch retrieval
- 分类号:
-
TP391;TP126
- 文献标志码:
-
A
- 摘要:
-
提出了一种基于线性规划分类器的相关反馈方法.所设计的线性规划分类器将特征选择和分类学习结合起来,使其不仅能在利用用户标注的小样本条件下进行实时训练,而且能根据样本对分类的贡献程度选择用户反馈中的敏感特征,从而能在相关反馈小样本训练条件下有效捕捉用户的反馈意图.针对草图检索的实验结果验证了所提出方法在相关反馈中的有效性.
- Abstract:
-
This paper presents a method of applying relevance feedback to an auto mated sketch retrieval system by means of linear programming (LP) classification . A linear programming classifier was designed by combining feature selection wi th classification learning. The proposed classifier not only achieved real-time learning based on small sets of user-annotated samples, but also identified sens itive features from user’s interactive selections according to their contributi on to the classification of candidate sketches, effectively capturing the intent of user feedback with only a small set of training samples giving relevance fee dback. Experiments in sketch retrieval prove that the proposed method is both ef fective and efficient for relevance feedback.
更新日期/Last Update:
2009-05-07