[1]吴建生.基于粒子群算法的神经网络短期降水预报建模研究[J].智能系统学报,2006,1(2):67-73.
WU Jian-sheng.Study on the shorttime rainfall prediction model of neural ensemble based on PSO algorithms[J].CAAI Transactions on Intelligent Systems,2006,1(2):67-73.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
1
期数:
2006年第2期
页码:
67-73
栏目:
学术论文—机器学习
出版日期:
2006-10-25
- Title:
-
Study on the shorttime rainfall prediction model of neural ensemble based on PSO algorithms
- 文章编号:
-
1673-4785(2006)02-0067-07
- 作者:
-
吴建生
-
柳州师范高等专科学校数学与计算机科学系,广西柳州545004
- Author(s):
-
WU Jian-sheng
-
Department of Mathematics and Computer Science, Liuzhou Teache rs College, Liuzhou 545004,China
-
- 关键词:
-
神经网络集成; 粒子群优化; 二次规划
- Keywords:
-
neural network ensemble; particle swarm optimization; quadratic program
- 分类号:
-
TP183
- 文献标志码:
-
A
- 摘要:
-
用多样性粒子群算法优化神经网络的网络结构和连接权,获得神经网络集成个体;进一步用二次规划方法,计算各集成个体的最优非负权系数进行组合集成,生成神经网络集成的输出结论,进行短期降水预报建模研究.以广西全区的月降水量实例分析,结果表明该方法能有效提高系统的泛化能力.
- Abstract:
-
This paper presents the evolving neural network architecture and connection weig hts based on Diversityguided Particle Swarm Optimization algorithms. The ensem ble strategy is carried out by using the quadratic programming to calculate the best nonnegative weights. The weighted coefficient of each ensemble individual is o b tained. This method can be used to establish the forecast model of the shortti m e rainfall. The applied example is built with the monthly mean rainfall in the w hole area of Guangxi. The result shows that this method can effectively increase the generalization ability of neural network.
更新日期/Last Update:
2009-05-05