[1]曹汉童,陈璟.融合Doc2vec与GCN的多类型蛋白质相互作用预测方法[J].智能系统学报,2023,18(6):1165-1172.[doi:10.11992/tis.202212029]
 CAO Hantong,CHEN Jing.Prediction of multitype protein interactions combining Doc2vec and GCN[J].CAAI Transactions on Intelligent Systems,2023,18(6):1165-1172.[doi:10.11992/tis.202212029]
点击复制

融合Doc2vec与GCN的多类型蛋白质相互作用预测方法

参考文献/References:
[1] PETTA I, LIEVENS S, LIBERT C, et al. Modulation of protein-protein interactions for the development of novel therapeutics[J]. Molecular therapy, 2016, 24(4): 707–718.
[2] SKRABANEK L, SAINI H K, BADER G D, et al. Computational prediction of protein-protein interactions[J]. Molecular biotechnology, 2008, 38(1): 1–17.
[3] FIELDS S, SONG O K. A novel genetic system to detect protein-protein interactions[J]. Nature, 1989, 340(6230): 245–246.
[4] GAVIN A C, B?SCHE M, KRAUSE R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes[J]. Nature, 2002, 415(6868): 141–147.
[5] HO Y, GRUHLER A, HEILBUT A, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry[J]. Nature, 2002, 415(6868): 180–183.
[6] SUN Tanlin, ZHOU Bo, LAI Luhua, et al. Sequence-based prediction of protein protein interaction using a deep-learning algorithm[J]. BMC bioinformatics, 2017, 18(1): 1–8.
[7] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444.
[8] CIERPICKI T, GREMBECKA J. Targeting protein-protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies?[J]. Immunological reviews, 2015, 263(1): 279–301.
[9] PHILIPP O, OSIEWACZ H D, KOCH I. Path2PPI: an R package to predict protein-protein interaction networks for a set of proteins[J]. Bioinformatics, 2016, 32(9): 1427–1429.
[10] GUO Yanzhi, YU Lezheng, WEN Zhining, et al. Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences[J]. Nucleic acids research, 2008, 36(9): 3025–3030.
[11] WONG L, YOU Zhuhong, LI Shuai, et al. Detection of protein-protein interactions from amino acid sequences using a rotation forest model with a novel PR-LPQ descriptor[C]//International Conference on Intelligent Computing. Cham: Springer, 2015: 713-720.
[12] SILBERBERG Y, KUPIEC M, SHARAN R. A method for predicting protein-protein interaction types[J]. PLoS One, 2014, 9(3): e90904.
[13] SHEN Juwen, ZHANG Jian, LUO Xiaomin, et al. Predicting protein-protein interactions based only on sequences information[J]. Proceedings of the national academy of sciences of the United States of America, 2007, 104(11): 4337–4341.
[14] LI Hang, GONG Xiujun, YU Hua, et al. Deep neural network based predictions of protein interactions using primary sequences[J]. Molecules, 2018, 23(8): 1923.
[15] HASHEMIFAR S, NEYSHABUR B, KHAN A A, et al. Predicting protein-protein interactions through sequence-based deep learning[J]. Bioinformatics, 2018, 34(17): i802–i810.
[16] CHEN Muhao, JU C J T, ZHOU Guangyu, et al. Multifaceted protein-protein interaction prediction based on siamese residual RCNN[J]. Bioinformatics, 2019, 35(14): i305–i314.
[17] 吴国栋, 查志康, 涂立静, 等. 图神经网络推荐研究进展[J]. 智能系统学报, 2020, 15(1): 14–24
WU Guodong, ZHA Zhikang, TU Lijing, et al. Research advances in graph neural network recommendation[J]. CAAI transactions on intelligent systems, 2020, 15(1): 14–24
[18] 马帅, 刘建伟, 左信. 图神经网络综述[J]. 计算机研究与发展, 2022, 59(1): 47–80
MA Shuai, LIU Jianwei, ZUO Xin. Survey on graph neural network[J]. Journal of computer research and development, 2022, 59(1): 47–80
[19] YANG Fang, FAN Kunjie, SONG Dandan, et al. Graph-based prediction of Protein-protein interactions with attributed signed graph embedding[J]. BMC bioinformatics, 2020, 21(1): 323.
[20] LYU Guofeng, HU Zhiqiang, BI Yanguang, et al. Learning unknown from correlations: graph neural network for inter-novel-protein interaction prediction[EB/OL]. (2021-05-14)[2022-12-30].https://arxiv.org/abs/2105.06709.
[21] LE Q V, MIKOLOV T. Distributed representations of sentences and documents[EB/OL]. (2014-05-16) [2022-12-30].https://arxiv.org/abs/1405.4053.
[22] ZHANG Si, TONG Hanghang, XU Jiejun, et al. Graph convolutional networks: a comprehensive review[J]. Computational social networks, 2019, 6(1): 1–23.
[23] 万莹莹. 基于图卷积网络的半监督图分类研究[D]. 桂林: 广西师范大学, 2021.
WAN Yingying. Research on semi-supervised graph classification with graph convolutional network[D]. Guilin: Guangxi Normal University, 2021.
[24] SZKLARCZYK D, GABLE A L, LYON D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic acids research, 2019, 47(D1): D607–D613.
[25] 桂元苗. 面向蛋白互作预测的序列数据特征识别研究[D]. 合肥: 中国科学技术大学, 2019.
GUI Yuanmiao. Research on feature recognition of sequence data for protein interaction prediction[D]. Hefei: University of Science and Technology of China, 2019.
相似文献/References:
[1]吴国栋,查志康,涂立静,等.图神经网络推荐研究进展[J].智能系统学报,2020,15(1):14.[doi:10.11992/tis.201908034]
 WU Guodong,ZHA Zhikang,TU Lijing,et al.Research advances in graph neural network recommendation[J].CAAI Transactions on Intelligent Systems,2020,15():14.[doi:10.11992/tis.201908034]
[2]张勇,高大林,巩敦卫,等.用于关系抽取的注意力图长短时记忆神经网络[J].智能系统学报,2021,16(3):518.[doi:10.11992/tis.202008036]
 ZHANG Yong,GAO Dalin,GONG Dunwei,et al.Attention graph long short-term memory neural network for relation extraction[J].CAAI Transactions on Intelligent Systems,2021,16():518.[doi:10.11992/tis.202008036]
[3]周俊,张志强,曹月恬,等.地理位置和时间感知的表示学习框架[J].智能系统学报,2021,16(5):909.[doi:10.11992/tis.202104011]
 ZHOU Jun,ZHANG Zhiqiang,CAO Yuetian,et al.A geography and time aware representation learning framework[J].CAAI Transactions on Intelligent Systems,2021,16():909.[doi:10.11992/tis.202104011]
[4]卢毅,陈亚冉,赵冬斌,等.关键点图对比图像分类方法[J].智能系统学报,2023,18(1):36.[doi:10.11992/tis.202112001]
 LU Yi,CHEN Yaran,ZHAO Dongbin,et al.Keypoint-based graph contrastive neural network for image classification[J].CAAI Transactions on Intelligent Systems,2023,18():36.[doi:10.11992/tis.202112001]
[5]车飞虎,张大伟,邵朋朋,等.基于四元数门控图神经网络的脚本事件预测[J].智能系统学报,2023,18(1):138.[doi:10.11992/tis.202203042]
 CHE Feihu,ZHANG Dawei,SHAO Pengpeng,et al.Script event prediction based on a quaternion-gated graph neural network[J].CAAI Transactions on Intelligent Systems,2023,18():138.[doi:10.11992/tis.202203042]
[6]孟祥福,温晶,李子函,等.多重注意力指导下的异构图嵌入方法[J].智能系统学报,2023,18(4):688.[doi:10.11992/tis.202204006]
 MENG Xiangfu,WEN Jing,LI Zihan,et al.Heterogeneous graph embedding method guided by the multi-attention mechanism[J].CAAI Transactions on Intelligent Systems,2023,18():688.[doi:10.11992/tis.202204006]
[7]周贤琛,马扬,程光权,等.战场目标实体类型识别的鲁棒图神经网络方法[J].智能系统学报,2023,18(6):1156.[doi:10.11992/tis.202111025]
 ZHOU Xianchen,MA Yang,CHENG Guangquan,et al.Robust graph neural network method for target entity type recognition in a battlefield environment[J].CAAI Transactions on Intelligent Systems,2023,18():1156.[doi:10.11992/tis.202111025]
[8]刘晓光,李梅.基于深度学习的药物-靶标相互作用预测研究综述[J].智能系统学报,2024,19(3):494.[doi:10.11992/tis.202308024]
 LIU Xiaoguang,LI Mei.A survey of deep learning-based drug-target interaction prediction[J].CAAI Transactions on Intelligent Systems,2024,19():494.[doi:10.11992/tis.202308024]

备注/Memo

收稿日期:2022-12-30。
基金项目:江苏省青年自然科学基金项目(BK20150159).
作者简介:曹汉童,硕士研究生,主要研究方向为生物信息学;陈璟,副教授,博士,主要研究方向为生物信息学。主持江苏省青年基金1项,参加国家自然科学基金项目3项,申请发明专利13项,授权发明专利5项,获得省部级奖励4项,发表学术论文20余篇
通讯作者:陈璟,E-mail:chenjing@jiangnan.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com