[1]俞? 奎,王? 浩,姚宏亮.动态影响图模型研究[J].智能系统学报,2008,3(2):159-166.
 YU Kui,WANG Hao,YAO Hong-liang.A dynamic influence diagram for dynamic decision processes[J].CAAI Transactions on Intelligent Systems,2008,3(2):159-166.
点击复制

动态影响图模型研究

参考文献/References:
[1] KAELB LING L P, LITTMAN M L, MOORE A W. Reinforcement learning: a survey[J]. Journal of Artificial Intelligence Research, 1996,4: 237285.
[2]POUPART P. Exploiting structure to efficiently solve large scale partiall y observable markov decision processes\[D\]. Toronto:University of Toronto, 2005.
[3]KAELBLING L P, LITTMAN M L, CASSANDRA A R. Planning and acting in partiall y observable stochastic domains[J]. Artificial Intelligence, 1998, 101: 99134. 
[4]MICHAEL J, YISHAY M, ANDREW Y. Ng approximate planning in la rg e POMDPs via reusable trajectories[C]// Advances in Neural Information Processing Systems. [S.l.] Cambridge:MIT Press,1999:10011007.[5]NICHOLAS R, GEOFFREY J. Gordon, sebastian thrun: finding approximate POM DP solutions through belief compression[J]. J Artif Intell Res(JAIR), 2005 , 23: 140.
[6]PAPADIMITRIOU C H, TSITSIKLIS J N. The complexity of Markov decisio n processes\[J\]. Mathematics of Operations Research, 1987, 12(3):441450.
[7]LUSENA C, GOLDSMITH J, MUNDHENK M. Nonapproximabilit y results for partially observable Markov decision processes[J]. Journal of Arti ficial Intelligence Research, 2001, 14:83103.
[8]DEAN T,KANAZAWA K. Probabilistic temporal reasoning[C]// National Conference on Artificial Intelligence. Washington:AAAI Press, 1988, 524528.
[9]RONALD A, HOWARD, JAMES E. Readings on the principles and app li cations of decision analysis [M]. [S.l.]: Strategic Decision Group, 1 984.
[10]BOUTILIER C, DEAN T, HANKS S. Decisiontheoretic planning: s tructural a ssumptions and computational leverage[J]. Journal of Artificial Intelligence R esearch, 1999, 11:194.
[11]JOSEPH A, TATMAN, ROSS D, et al. Dynamic programming and influence di agrams[J]. IEEE Transations on Systems, Man, and Cybernetics, 1990, 20(2):365 379.
[12]BRENDA N G. Avi Pfeffer, Factored Particles for Scalable M on itoring[C]// Uncertainty in Artificial Int elligence Morgan Kaufmann. San Francisco, USA,2002:370377.
[13]PRASHANT D, PIOTR G. A particle filtering based appro ac h to approximating interactive POMDPs[C]// P Nati onal Conference on Artificial Intelligence, Menlo Park.AAAI Press,2005:969974.

备注/Memo

收稿日期:2007-06-20.
基金项目:
国家自然科学基金资助项目(60575023,60705015);
安徽省自然科学基金资助项目(07041206 4).
作者简介:
俞 奎,男,1979年生,硕士研究生,主要研究方向为贝叶斯网络建模与推理、Agent技术,发表学术论文7篇. 
王 浩, 男, 1962年生, 教授,博士,合肥工业大学计算机与信息学院副院长,主要研究方向为人工智能、数据挖掘、面向对象技术等,中国自动化学会机器人竞赛工作委员会委员、安徽省高校中青年骨干教师.先后参加国家自然科学基金、国家教委博士点基金等10多项课题研究,获安徽省科技进步三等奖2项.目前主持国家自然科学基金和安徽省自然科学基金等多项课题.
?姚宏亮,男,1972年生,副教授,博士,主要研究方向为贝叶斯网络、Agent技术,发表学术论文10余篇.
通讯作者:俞 奎.E-mail:ykui713@hotmail.com.

更新日期/Last Update: 2009-05-11
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com