[1]邓翠艳,齐小刚.基于深度行为评判策略的5G光伏基站低碳绿能方法[J].智能系统学报,2025,20(5):1198-1206.[doi:10.11992/tis.202501024]
 DENG Cuiyan,QI Xiaogang.Low-carbon green energy methods for 5G photovoltaic station based on the deep actor-critic strategy[J].CAAI Transactions on Intelligent Systems,2025,20(5):1198-1206.[doi:10.11992/tis.202501024]
点击复制

基于深度行为评判策略的5G光伏基站低碳绿能方法

参考文献/References:
[1] 邓翠艳, 齐小刚. 一种注意力机制LSTM的5G网络地铁节电方法[J]. 智能系统学报, 2024, 19(5): 1309-1318.
DENG Cuiyan, QI Xiaogang. 5G network subway power-saving method based on attention mechanism LSTM[J]. CAAI transactions on intelligent systems, 2024, 19(5): 1309-1318.
[2] 周靖皓, 魏国良, 林健, 等. 5G通信基站光储配置及充放电方法的研究[J]. 电子技术应用, 2024, 50(7): 46-50.
ZHOU Jinghao, WEI Guoliang, LIN Jian, et al. The research on the configuration and charging-discharging methods of optical energy storage for 5G communication base station[J]. Application of electronic technique, 2024, 50(7): 46-50.
[3] 张红波. 通信基站差异化能源管理与节能优化研究[J]. 长江信息通信, 2024, 37(11): 222-225.
ZHANG Hongbo. Differentiated energy management and energy efficiency optimization in communication base stations[J]. Changjiang information & communications, 2024, 37(11): 222-225.
[4] 闫洪硕, 冯连勇. 基于能源投入回报方法的光伏治沙模式综合效益分析[J]. 生态经济, 2020, 36(7): 170-175.
YAN Hongshuo, FENG Lianyong. Comprehensive benefit analysis of photovoltaic sand control based on EROI[J]. Ecological economy, 2020, 36(7): 170-175.
[5] 李星锴, 陈湘萍, 蔡永翔, 等. 高比例分布式光伏并网背景下配电系统电碳耦合规划方法[J]. 中外能源, 2025, 30(1): 38-46.
LI Xingkai, CHEN Xiangping, CAI Yongxiang, et al. Electric-carbon coupling planning method for distribution grids in the con-text of high percentage of distributed photovoltaic grid integration[J]. Sino-global energy, 2025, 30(1): 38-46.
[6] WU Huangying, XIE Shangzhen, CHEN Guopeng, et al. Effective integrated thermal management using hygroscopic hydrogel for photovoltaic-thermoelectric applications[J]. Journal of colloid and interface science, 2025, 683: 81-91.
[7] 李文博, 李岳岩. 实景三维模拟下的农宅光伏布置策略研究: 以西安市临潼区李坡村为例[J]. 建筑科学, 2024, 40(12): 58-66.
LI Wenbo, LI Yueyan. Study on photovoltaic layout strategies for rural houses in real-scene 3 D simulation: a case study of lipo village, Lintong district, Xi’an[J]. Building science, 2024, 40(12): 58-66.
[8] DAXINI R, WILSON R, WU Yupeng. Seasonal and intraday effects on spectral mismatch corrections for photovoltaic performance modelling in the United Kingdom[J]. Energy reports, 2025, 13: 759-769.
[9] WANG Shuang, WU Siwei, TANG Bo, et al. Generation method of wind power and photovoltaic output scenarios based on LHS-GRU[J]. Sustainable energy, grids and networks, 2025, 41: 101602.
[10] ICHIMESCU A, POPESCU N, POPOVICI E C, et al. Energy efficiency for 5G and beyond 5G: potential, limitations, and future directions[J]. Sensors, 2024, 24(22): 7402.
[11] KHAN A, ZHANG Jinling, AHMAD S, et al. DQN-based proactive trajectory planning of UAVs in multi-access edge computing[J]. Computers, materials & continua, 2023, 74(3): 4685-4702.
[12] JIANG Dingde, ZHU Bowen, SUN Junyang, et al. Rethinking max-Min planning on energy-efficient software-defined networking for 5G networks[J]. Scientific reports, 2024, 14(1): 25709.
[13] HOU Zihao, LONG Chao, QI Qi, et al. Optimal planning of SOP in distribution network considering 5G BS collaboration[J]. IET renewable power generation, 2024, 18(15): 3040-3052.
[14] BESCHASTNYI V, OSTRIKOVA D, MOLTCHANOV D, et al. Comparison of energy conservation strategies for 5G NR RedCap service in industrial environment[J]. Computer networks, 2024, 254: 110792.
[15] RAMESH P, BHUVANESWARI P T V, DHANUSHREE V S, et al. User association-based load balancing using reinforcement learning in 5G heterogeneous networks[J]. The journal of supercomputing, 2024, 81(1): 328.
[16] 郭猛. 基于5G网络承载能力的负荷均衡功能研究[J]. 计算机应用文摘, 2023, 39(18): 134-136.
GUO Meng. Research on load balancing function based on 5G network carrying capacity[J]. Chinese journal of computer application, 2023, 39(18): 134-136.
[17] ELSHERIF F, CHONG E K P, KIM J H. Energy-efficient base station control framework for 5G cellular networks based on Markov decision process[J]. IEEE transactions on vehicular technology, 2019, 68(9): 9267-9279.
[18] NG J, WANG X, SINGH A K, et al. Defragmentation for efficient runtime resource management in NoC-based many-core systems[J]. IEEE transactions on very large scale integration systems, 2016, 24(11): 3359-3372.
[19] THAKKAR P, PATEL A S, SHUKLA G, et al. Dynamic microservice provisioning in 5G networks using edge–cloud continuum[J]. Journal of network and systems management, 2024, 32(4): 87.
[20] SAHA T, CHAUHAN P, PRADHAN K, et al. Priority-based subcarrier allocation algorithm for maximal network connectivity in 5G networks[J]. Physical Communication, 2024, 66: 102443.
[21] ALI MANSOURI W, MOHAMMED ELMOURSSI D, ELYASS W A. Enhancing V2X QoS: dynamic scheduling scheme over 5G networks and byon[J]. International journal of information technology, 2024, 16(7): 4427-4433.
[22] GOWRI S, VIMALANAND S. QoS-aware resource allocation scheme for improved transmission in 5G networks with IOT[J]. SN computer science, 2024, 5(2): 234.
[23] 孙通, 张沈习, 曹毅, 等. 计及5G基站可调特性的配电网分布式光伏准入容量鲁棒优化[J]. 中国电力, 2025, 58(2): 140-146.
SUN Tong, ZHANG Shenxi, CAO Yi, et al. Robust optimization of hosting capacity of distributed photovoltaics in distribution network considering adjustable characteristics of 5G base station[J]. Electric power, 2025, 58(2): 140-146.
[24] MA Xiufan, DUAN Ying, MENG Xiangyu, et al. Optimal configuration for photovoltaic storage system capacity in 5G base station microgrids[J]. Global energy interconnection, 2021, 4(5): 465-475.
[25] PETRESCU F I T. Structure of a photovoltaic electric locomotive[J]. American journal of engineering and applied sciences, 2019, 12(4): 503-507.
[26] 骆钊, 刘德文, 贾芸睿, 等. 考虑绿色氢能证书和水电制氢的综合能源系统优化运行[J]. 电网技术, 2024, 48(4): 1445-1458.
LUO Zhao, LIU Dewen, JIA Yunrui, et al. Optimal operation of integrated energy system considering green hydrogen certificate and hydrogen production by hydropower[J]. Power system technology, 2024, 48(4): 1445-1458.
[27] BROUZAS S, ZADEH M, LAGEMANN B. Essentials of hydrogen storage and power systems for green shipping[J]. International journal of hydrogen energy, 2025, 100: 1543-1560.
[28] YANG Fengyu, WANG Dazhi. IoT-enabled intelligent fault detection and rectifier optimization in wind power generators[J]. Alexandria engineering journal, 2025, 116: 129-140.
[29] TRIPATHI S, SHRIVASTAVA A, JANA K C. An efficient energy management system for a micro-grid system considering the volatility of hybrid renewable energy[J]. International journal of hydrogen energy, 2025, 101: 673-691.
[30] NIRWAN A, TAO Han. Green mobile networks: a networking perspective[M]. New York: Wiley-IEEE Press, 2016: 25-32.

备注/Memo

收稿日期:2025-1-16。
基金项目:2023年山西省高等学校科技创新项目(2023L517).
作者简介:邓翠艳,讲师,主要研究方向为数据挖掘、大数据与人工智能。主持省教育规划课题2项,获发明专利授权2项,发表学术论文5篇。E-mail:13934146632@139.com。;齐小刚,教授,博士生导师,博士,主要研究方向为复杂系统建模与仿真、网络算法设计与应用。主持完成国家自然科学基金项目等30余项,登记软件著作权13项,发表学术论文 150 余篇。E-mail:xgqi@xidian.edu.cn。
通讯作者:邓翠艳. E-mail:13934146632@139.com

更新日期/Last Update: 2025-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com