[1]裴佳明,孔伟力,于长东,等.基于多无人机协作与联邦学习的目标检测与跟踪系统研究[J].智能系统学报,2025,20(5):1158-1166.[doi:10.11992/tis.202412031]
 PEI Jiaming,KONG Weili,YU Changdong,et al.A multi-UAV collaborative system and federated learning for target detection and tracking based on federated learning[J].CAAI Transactions on Intelligent Systems,2025,20(5):1158-1166.[doi:10.11992/tis.202412031]
点击复制

基于多无人机协作与联邦学习的目标检测与跟踪系统研究

参考文献/References:
[1] SHAN Jinhuan, JIANG Wei, HUANG Yue, et al. Unmanned aerial vehicle (UAV)-based pavement image stitching without occlusion, crack semantic segmentation, and quantification[J]. IEEE transactions on intelligent transportation systems, 2024, 25(11): 17038-17053.
[2] AL RADI M, ALMALLAHI M N, AL-SUMAITI A S, et al. Progress in artificial intelligence-based visual servoing of autonomous unmanned aerial vehicles (UAVs)[J]. International journal of thermofluids, 2024, 21: 100590.
[3] ALAMI R, HACID H, BELLONE L, et al. SOREO: a system for safe and autonomous drones fleet navigation with reinforcement learning[J]. Proceedings of the AAAI conference on artificial intelligence, 2023, 37(13): 16398-16400.
[4] PEI Jiaming, YU Zhi, LIU Wenxuan, et al. Clustered federated learning multi-classifier for non-IID scenario in drone devices[C]//Proceedings of the 5th International ACM Mobicom Workshop on Drone Assisted Wireless Communications for 5G and beyond. Sydney: ACM, 2022: 79-84.
[5] MU Junsheng, ZHANG Ronghui, CUI Yuanhao, et al. UAV meets integrated sensing and communication: challenges and future directions[J]. IEEE communications magazine, 2023, 61(5): 62-67.
[6] LI Yiting, FAN Qingsong, HUANG Haisong, et al. A modified YOLOv8 detection network for UAV aerial image recognition[J]. Drones, 2023, 7(5): 304.
[7] NGUYEN X T, JEON G, VY V, et al. A hybrid approach for vision-based structural displacement measurement using transforming model prediction and KLT[J]. Mechanical systems and signal processing, 2025, 223: 111866.
[8] SAMY I, POSTLETHWAITE I, GU Dawei. Neural network based sensor validation scheme demonstrated on an unmanned air vehicle (UAV) model[C]//2008 47th IEEE Conference on Decision and Control. Cancun: IEEE, 2008: 1237-1242.
[9] WU Ying, CHEN Mou, LI Hongyi, et al. Event-triggered-based adaptive NN cooperative control of six-rotor UAVs with finite-time prescribed performance[J]. IEEE transactions on automation science and engineering, 2024, 21(2): 1867-1877.
[10] CUI Beibei, LIANG Liang, JI Baofeng, et al. Exploring the YOLO-FT deep learning algorithm for UAV-based smart agriculture detection in communication networks[J]. IEEE transactions on network and service management, 2024, 21(5): 5347-5360.
[11] SONG Zhe, ZHANG Yi, YU Yang, et al. Cooperative positioning algorithm based on manifold gradient filtering in UAV-WSN[J]. IEEE sensors journal, 2024, 24(8): 12676-12688.
[12] 姚元志. 区块链赋能的移动边缘计算辅助无人机系统性能优化研究[D]. 南昌: 南昌大学, 2024.
YAO Yuanzhi. Research on performance optimization of UAV system assisted by blockchain enabled mobile edge computing[D]. Nanchang: Nanchang University, 2024.
[13] 张艺龄, 张正华, 肖胜川, 等. 基于分布式控制的多无人机协作喷洒技术[J]. 信息技术, 2024, 48(4): 59-63, 69.
ZHANG Yiling, ZHANG Zhenghua, XIAO Shengchuan, et al. Collaborative spraying technology of multiple-UAVs based on distributed control[J]. Information technology, 2024, 48(4): 59-63, 69.
[14] 曹腾飞, 尹润天, 朱亮, 等. 个性化位置隐私保护技术综述[J]. 计算机科学, 2025, 52(5): 307-321.
CAO Tengfei, YIN Runtian, ZHU Liang, et al. Survey of personalized location privacy protection technologies[J]. Computer science, 2025, 52(5): 307-321.
[15] 苗可. 基于新型纵向联邦学习的隐私保护物联网数据共享方案[J]. 物联网技术, 2024, 14(9): 60-63, 68.
MIAO Ke. Privacy protection data sharing scheme for internet of things based on new vertical federated learning[J]. Internet of Things technologies, 2024, 14(9): 60-63, 68.
[16] 王华华, 黄烨霞, 李玲, 等. 无蜂窝网络中的联邦学习用户调度与资源优化[J/OL]. 计算机工程, 2024: 1-18. (2024-09-12). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JSJC20240911003&dbname=CJFD&dbcode=CJFQ.
WANG Huahua, HUANG Yexia, LI Ling, et al. Federated learning user scheduling and resource optimization in cellular-free networks[J/OL]. China industrial economics, 2024: 1-18. (2024-09-12). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JSJC20240911003&dbname=CJFD&dbcode=CJFQ.
[17] PEI Jiaming, LIU Wenxuan, LI Jinhai, et al. A review of federated learning methods in heterogeneous scenarios[J]. IEEE transactions on consumer electronics, 2024, 70(3): 5983-5999.
[18] PEI Jiaming, XUE Rubing, LIU Chao, et al. Toward Byzantine-resilient secure AI: a federated learning communication framework for 6G consumer electronics[J]. IEEE transactions on consumer electronics, 2024, 70(3): 5719-5728.
[19] YANG Qiang, LIU Yang, CHEN Tianjian, et al. Federated machine learning[J]. ACM transactions on intelligent systems and technology, 2019, 10(2): 1-19.
[20] 林瑞阳, 杨东升, 邱锋. Unscented卡尔曼滤波对目标位置预测[J]. 现代电子技术, 2014, 37(1): 34-37.
LIN Ruiyang, YANG Dongsheng, QIU Feng. Target position prediction of unscented Kalman filter[J]. Modern electronics technique, 2014, 37(1): 34-37.
[21] 徐琦, 蔡聪, 王熠钊. 一种基于数据融合的机动目标跟踪预测算法[J]. 系统仿真学报, 2011, 23(11): 2444-2448.
XU Qi, CAI Cong, WANG Yizhao. Forecast algorithm for tracking moving targets based on data fusion[J]. Journal of system simulation, 2011, 23(11): 2444-2448.
[22] MAHFOUZ S, MOURAD-CHEHADE F, HONEINE P, et al. Target tracking using machine learning and Kalman filter in wireless sensor networks[J]. IEEE sensors journal, 2014, 14(10): 3715-3725.
[23] HUANG Yecheng, CHEN Jiaxin, HUANG Di. UFPMP-det: toward accurate and efficient object detection on drone imagery[J]. Proceedings of the AAAI conference on artificial intelligence, 2022, 36(1): 1026-1033.
[24] XIA Guisong, BAI Xiang, DING Jian, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3974-3983.
[25] ZHU Pengfei, WEN Longyin, DU Dawei, et al. VisDrone-DET2018: the vision meets drone object detection in image challenge results[C]//Computer Vision–ECCV 2018 Workshops. Cham: Springer International Publishing, 2019: 437-468.
[26] ABADI M. TensorFlow: learning functions at scale[C]//Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming. Nara: ACM, 2016: 1.
相似文献/References:
[1]秦世引,潘宇雄,苏善伟.小型无人机编队飞行的控制律设计与仿真[J].智能系统学报,2009,4(3):218.
 QIN Shi-yin,PAN Yu-xiong,SU Shan-wei.Design and simulation of formation flight control laws for small unmanned aerial vehicles[J].CAAI Transactions on Intelligent Systems,2009,4():218.
[2]朱杰斌,秦世引.无人机编队飞行的分布式控制策略与控制器设计[J].智能系统学报,2010,5(5):392.[doi:10.3969/j.issn.1673-4785.2010.05.003]
 ZHU Jie-bin,QIN Shi-yin.Distributed control strategy and controller design for UAV formation flight[J].CAAI Transactions on Intelligent Systems,2010,5():392.[doi:10.3969/j.issn.1673-4785.2010.05.003]
[3]刘敏,邹杰,冯星,等.人工蜂群算法的无人机航路规划与平滑[J].智能系统学报,2011,6(4):344.
 LIU Min,ZOU Jie,FENG Xing,et al.Smooth trajectory planning of an unmanned aerial vehicleusing an artificial bee colony algorithm[J].CAAI Transactions on Intelligent Systems,2011,6():344.
[4]胡文超,孙新柱,陈孟元.音频感知哈希闭环检测的无人机仿生声呐SLAM算法研究[J].智能系统学报,2019,14(2):338.[doi:10.11992/tis.201708018]
 HU Wenchao,SUN Xinzhu,CHEN Mengyuan.Research on BATSLAM algorithm for UAV based on audio perceptual hash closed-loop detection[J].CAAI Transactions on Intelligent Systems,2019,14():338.[doi:10.11992/tis.201708018]
[5]徐魏超,王冠凌,陈孟元.无人机协助下基于SR-CKF的无线传感器网络节点定位研究[J].智能系统学报,2019,14(3):575.[doi:10.11992/tis.201709019]
 XU Weichao,WANG Guanling,CHEN Mengyuan.Node localization of wireless sensor networks based on SR-CKF assisted by unmanned aerial vehicles[J].CAAI Transactions on Intelligent Systems,2019,14():575.[doi:10.11992/tis.201709019]
[6]张飞,白伟,乔耀华,等.基于改进D*算法的无人机室内路径规划[J].智能系统学报,2019,14(4):662.[doi:10.11992/tis.201803031]
 ZHANG Fei,BAI Wei,QIAO Yaohua,et al.UAV indoor path planning based on improved D* algorithm[J].CAAI Transactions on Intelligent Systems,2019,14():662.[doi:10.11992/tis.201803031]
[7]齐小刚,李博,范英盛,等.多约束下多无人机的任务规划研究综述[J].智能系统学报,2020,15(2):204.[doi:10.11992/tis.201811018]
 QI Xiaogang,LI Bo,FAN Yingsheng,et al.A survey of mission planning on UAVs systems based on multiple constraints[J].CAAI Transactions on Intelligent Systems,2020,15():204.[doi:10.11992/tis.201811018]
[8]吴莹莹,丁肇红,刘华平,等.面向环境探测的多智能体自组织目标搜索算法[J].智能系统学报,2020,15(2):289.[doi:10.11992/tis.201908023]
 WU Yingying,DING Zhaohong,LIU Huaping,et al.Self-organizing target search algorithm of multi-agent system for envi-ronment detection[J].CAAI Transactions on Intelligent Systems,2020,15():289.[doi:10.11992/tis.201908023]
[9]付昆,田金文,马懿超.多特征融合的异视角目标关联算法[J].智能系统学报,2020,15(5):847.[doi:10.11992/tis.202006037]
 FU Kun,TIAN Jinwen,MA Yichao.Target association from different perspectives based on multi-feature fusion[J].CAAI Transactions on Intelligent Systems,2020,15():847.[doi:10.11992/tis.202006037]
[10]段海滨,辛龙,邓亦敏.仿信鸽归巢行为的导航技术研究进展[J].智能系统学报,2021,16(1):1.[doi:10.11992/tis.202009049]
 DUAN Haibin,XIN Long,DENG Yimin.Technology research review on homing pigeon-inspired navigation[J].CAAI Transactions on Intelligent Systems,2021,16():1.[doi:10.11992/tis.202009049]

备注/Memo

收稿日期:2024-12-26。
基金项目:国家自然科学基金青年科学基金项目(52401362).
作者简介:裴佳明,博士研究生,主要研究方向为联邦学习、分布式系统。发表学术论文40余篇。E-mail:jiamingpei0262@ieee.org。;于长东,讲师,博士,主要研究方向为机器学习、计算视觉、流体智能感知和海上无人系统决策与控制技术,主持国家自然科学基金青年科学基金项目1项。E-mail:ycd@dlmu.edu.cn。;王鲁昆,副教授,主要研究方向为机器学习、计算视觉、流体智能感知和海上无人系统决策与控制技术。主持和参与国家自然科学基金项目、山东省自然科学基金项目、泰安市科技计划项目、高校科技计划项目等项目10项,以及教育部协同育人项目3项。获发明专利授权11项、软件著作权12项,发表学术论文21篇。 E-mail:wanglukun@sdust.edu.cn。
通讯作者:王鲁昆. E-mail:wanglukun@sdust.edu.cn

更新日期/Last Update: 2025-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com