[1]周璟昊,石磊,石拓,等.融合多维特征的电诈犯罪时空预测研究[J].智能系统学报,2025,20(5):1112-1122.[doi:10.11992/tis.202412025]
 ZHOU Jinghao,SHI Lei,SHI Tuo,et al.Spatiotemporal prediction of telecommunications network fraud crime with multidimensional feature fusion[J].CAAI Transactions on Intelligent Systems,2025,20(5):1112-1122.[doi:10.11992/tis.202412025]
点击复制

融合多维特征的电诈犯罪时空预测研究

参考文献/References:
[1] 侯苗苗, 胡啸峰. 基于时间序列模型SARIMA的犯罪预测研究[J]. 中国人民公安大学学报(自然科学版), 2021, 27(2): 67-73.
HOU Miaomiao, HU Xiaofeng. Study on crime prediction based on the time-series model SARIMA[J]. Journal of people’s public security university of China (science and technology), 2021, 27(2): 67-73.
[2] 颜靖华, 侯苗苗. 基于LSTM网络的盗窃犯罪时间序列预测研究[J]. 数据分析与知识发现, 2020, 4(11): 84-91.
YAN Jinghua, HOU Miaomiao. Predicting time series of theft crimes based on LSTM network[J]. Data analysis and knowledge discovery, 2020, 4(11): 84-91.
[3] 卢业成, 陈鹏, 江欢, 等. 犯罪时间序列的混沌特征分析与短期预测[J]. 科学技术与工程, 2023, 23(11): 4693-4701.
LU Yecheng, CHEN Peng, JIANG Huan, et al. Chaos characteristic analysis and short-term prediction of crime time series[J]. Science technology and engineering, 2023, 23(11): 4693-4701.
[4] 王勋, 董齐芬, 李玉. 基于深度时空三维卷积神经网络的短时犯罪预测研究[J]. 浙江警察学院学报, 2023(1): 90-103.
WANG Xun, DONG Qifen, LI Yu. A forecast research of short-time crime based on deep spatial-temporal three-dimensional convolutional neural network[J]. Journal of Zhejiang Police College, 2023(1): 90-103.
[5] 石拓, 张齐, 石磊. 多尺度视角特征动态融合的盗窃犯罪预测模型[J]. 智能系统学报, 2022, 17(6): 1104-1112.
SHI Tuo, ZHANG Qi, SHI Lei. Prediction model of theft crime based on the dynamic fusion of multiscale perspective characteristics[J]. CAAI transactions on intelligent systems, 2022, 17(6): 1104-1112.
[6] 赵丹, 杜萍, 刘涛, 等. 融合图自编码器与GRU的城市盗窃犯罪时空分布预测模型[J]. 地球信息科学学报, 2023, 25(7): 1448-1463.
ZHAO Dan, DU Ping, LIU Tao, et al. Spatio-temporal distribution prediction model of urban theft by fusing graph autoencoder and GRU[J]. Journal of geo-information science, 2023, 25(7): 1448-1463.
[7] 梁宏涛, 刘硕, 杜军威, 等. 深度学习应用于时序预测研究综述[J]. 计算机科学与探索, 2023, 17(6): 1285-1300.
LIANG Hongtao, LIU Shuo, DU Junwei, et al. Review of deep learning applied to time series prediction[J]. Journal of frontiers of computer science and technology, 2023, 17(6): 1285-1300.
[8] LIU Yong, HU Tengge, ZHANG Haoran, et al. iTransformer: inverted Transformers are effective for time series forecasting[EB/OL]. (2023-10-10)[2024-12-21]. https://arxiv.org/abs/2310.06625.
[9] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2017-10-30)[2024-12-21]. https://arxiv.org/abs/1710.10903.
[10] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2016-09-09)[2024-12-21]. https://arxiv.org/abs/1609.02907.
[11] 王贝贝, 万怀宇, 郭晟楠, 等. 融合局部和全局时空特征的交通事故风险预测[J]. 计算机科学与探索, 2021, 15(9): 1694-1702.
WANG Beibei, WAN Huaiyu, GUO Shengnan, et al. Local and global spatial-temporal networks for traffic accident risk forecasting[J]. Journal of frontiers of computer science and technology, 2021, 15(9): 1694-1702.
[12] 冯爱棋, 吴小俊, 徐天阳. 融合注意力机制和上下文信息的实时交通标志检测算法[J]. 计算机科学与探索, 2023, 17(11): 2676-2688.
FENG Aiqi, WU Xiaojun, XU Tianyang. Real-time traffic sign detection algorithm combining attention mechanism and contextual information[J]. Journal of frontiers of computer science and technology, 2023, 17(11): 2676-2688.
[13] 李汉章, 严宣辉, 李镇力, 等. 面向多变量时间序列异常检测的双图注意力网络模型[J]. 计算机科学与探索, 2025, 19(4): 1048-1064.
LI Hanzhang, YAN Xuanhui, LI Zhenli, et al. Dual graph attention model for multivariate time series anomaly detection[J]. Journal of frontiers of computer science and technology, 2025, 19(4): 1048-1064.
[14] 刘金平, 匡亚彬, 赵爽爽, 等. 长短滑窗慢特征分析与时序关联规则挖掘的过渡过程识别[J]. 智能系统学报, 2023, 18(3): 589-603.
LIU Jinping, KUANG Yabin, ZHAO Shuangshuang, et al. Transition process identification based on the long and short sliding windowed slow feature analysis and time series association rule mining[J]. CAAI transactions on intelligent systems, 2023, 18(3): 589-603.
[15] 李峰, 肖建华. 时间序列相似性分析中滑动窗口宽度的确定[J]. 计算机科学与探索, 2009, 3(1): 105-112.
LI Feng, XIAO Jianhua. How to get effective slide-window size in time series similarity search[J]. Journal of frontiers of computer science & technology, 2009, 3(1): 105-112.
[16] 张国豪, 刘波. 采用CNN和Bidirectional GRU的时间序列分类研究[J]. 计算机科学与探索, 2019, 13(6): 916-927.
ZHANG Guohao, LIU Bo. Research on time series classification using CNN and bidirectional GRU[J]. Journal of frontiers of computer science and technology, 2019, 13(6): 916-927.
[17] ZENG Ailing, CHEN Muxi, ZHANG Lei, et al. Are Transformers effective for time series forecasting?[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Washington DC: AAAI, 2023: 11121-11128.
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30: 5998-6008.
[19] WU Haixu, XU Jiehui, WANG Jianmin, et al. Autoformer: decomposition transformers with auto-correlation for long-term series forecasting[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2021: 22419-22430.
[20] ZHOU Tian, MA Ziqing, WEN Qingsong, et al. Fedformer: frequency enhanced decomposed Transformer for long-term series forecasting[C]//International Conference on Machine Learning. Baltimore: PMLR, 2022: 27268-27286.
[21] 孟祥福, 石皓源. 基于Transformer模型的时序数据预测方法综述[J]. 计算机科学与探索, 2025, 19(1): 45-64.
MENG Xiangfu, SHI Haoyuan. Survey of transformer-based model for time series forecasting[J]. Journal of frontiers of computer science and technology, 2025, 19(1): 45-64.
[22] SHI Tuo, FU Jie, HU Xiaofeng. TSE-Tran: prediction method of telecommunication-network fraud crime based on time series representation and Transformer[J]. Journal of safety science and resilience, 2023, 4(4): 340-347.
[23] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-12-11)[2024-12-21]. https://arxiv.org/abs/1412.3555v1.
[24] BAI Shaojie, KOLTER J Z, KOLTUN V, et al. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. (2018-03-04)[2024-12-21]. https://arxiv.org/abs/1803.01271v2.
[25] MUTHAMIZHARASAN M, PONNUSAMY R. Forecasting crime event rate with a CNN-LSTM model[C]//Innovative Data Communication Technologies and Application. Singapore: Springer Nature Singapore, 2022: 461-470.
[26] YU Bing, YIN Haoteng, ZHU Zhanxing. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm: AAAI Press, 2018: 3634-3640.
[27] LI Yaguang, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[EB/OL]. (2017-07-06)[2024-12-21]. https://arxiv.org/abs/1707.01926.
[28] BAI Lei, YAO Lina, LI Can, et al. Adaptive graph convolutional recurrent network for traffic forecasting[EB/OL]. (2020-07-06)[2024-12-21]. https://arxiv.org/abs/2007.02842v2.
[29] LI Fuxian, FENG Jie, YAN Huan, et al. Dynamic graph convolutional recurrent network for traffic prediction: benchmark and solution[EB/OL]. (2021-04-30)[2024-12-21]. https://arxiv.org/abs/2104.14917v2.

备注/Memo

收稿日期:2024-12-21。
基金项目:国家自然科学基金项目(62406023).
作者简介:周璟昊,硕士,主要研究方向为犯罪地理、犯罪预测。E-mail:503775304@qq.com。;石磊,副研究员,博士,中国人工智能学会智能服务专委会委员,主要研究方向为智能信息处理、大数据分析与挖掘、社交网络搜索及人工智能。E-mail:leiky_shi@cuc.edu.cn。;陈鹏,教授,博士,主要研究方向为数据警务、预测预警和风险评估。E-mail:chenpeng@ppsuc.edu.cn。
通讯作者:石磊. E-mail:leiky_shi@cuc.edu.cn

更新日期/Last Update: 2025-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com