[1]黄晓珂,刘海涛,汪培庄.融合图模糊信息的受限玻尔兹曼机[J].智能系统学报,2025,20(5):1103-1111.[doi:10.11992/tis.202412008]
HUANG Xiaoke,LIU Haitao,WANG Peizhuang.The restricted Boltzmann machine fuses picture fuzzy information[J].CAAI Transactions on Intelligent Systems,2025,20(5):1103-1111.[doi:10.11992/tis.202412008]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第5期
页码:
1103-1111
栏目:
学术论文—机器学习
出版日期:
2025-09-05
- Title:
-
The restricted Boltzmann machine fuses picture fuzzy information
- 作者:
-
黄晓珂1, 刘海涛1,2, 汪培庄2
-
1. 辽宁工程技术大学 理学院, 辽宁 阜新 123000;
2. 辽宁工程技术大学 智能工程与数学研究院, 辽宁 阜新 123000
- Author(s):
-
HUANG Xiaoke1, LIU Haitao1,2, WANG Peizhuang2
-
1. College of Science, Liaoning Technical University, Fuxin 12300, China;
2. Institute of Intelligence Engineering and Mathematics, Liaoning Technical University, Fuxin 123000, China
-
- 关键词:
-
深度学习; 图模糊数; 受限玻尔兹曼机; 图模糊自由能函数; 精确函数; 去模糊化; 对比散度; 重构误差
- Keywords:
-
deep learning; picture fuzzy numbers; restricted Boltzmann machine; picture fuzzy free energy function; accuracy function; defuzzify; contrastive divergence; reconstruction error
- 分类号:
-
TP391.4
- DOI:
-
10.11992/tis.202412008
- 摘要:
-
为了解决受限玻尔兹曼机表示能力不足的问题,提出融合图模糊信息的受限玻尔兹曼机模型。首先将限制经典受限玻尔兹曼机学习能力的精确值参数,扩展为可以对信息进行多维度刻画的图模糊数。其次结合精确度函数的思想对图模糊自由能量函数去模糊化,进而构建了新的优化目标及学习算法。最后,基于多个基准数据集上的多角度对比分析,证明了新模型可以有效地提升经典模型及多种扩展模型的表示能力与泛化能力。
- Abstract:
-
To solve the problem of insufficient representation ability of the restricted Boltzmann machine (RBM), a novel RBM model incorporating picture fuzzy information is proposed. First, the exact value parameter that limits the learning ability of the classical RBM is extended by the picture fuzzy numbers, which allow a multidimensional representation of information. Second, combined with the idea of precision function, the picture fuzzy free energy function is defuzzified, and then a new optimization target and learning algorithm are constructed. Finally, based on the multi-perspective comparative analysis using multiple benchmark datasets, it is demonstrated that the new model can effectively improve the representation and generalization capabilities of the classical model as well as various extended versions.
备注/Memo
收稿日期:2024-12-11。
基金项目:国家自然科学基金项目(61350003);辽宁省教育厅高等学校基本科研项目重点攻关项目(LJKZZ20220047).
作者简介:黄晓珂,硕士研究生,主要研究方向为智能数学理论与应用。E-mail:2806153271@qq.com。;刘海涛,副教授,博士,主要研究方向为模糊数学、因素空间理论。E-mail:haitao641@163.com。;汪培庄,教授,博士生导师,中国人工智能学会会士。主要研究方向为模糊数学、因素空间理论。发表学术论文113篇。E-mail:peizhuangw@126.com。
通讯作者:刘海涛. E-mail:haitao641@163.com
更新日期/Last Update:
2025-09-05