[1]黄晓珂,刘海涛,汪培庄.融合图模糊信息的受限玻尔兹曼机[J].智能系统学报,2025,20(5):1103-1111.[doi:10.11992/tis.202412008]
 HUANG Xiaoke,LIU Haitao,WANG Peizhuang.The restricted Boltzmann machine fuses picture fuzzy information[J].CAAI Transactions on Intelligent Systems,2025,20(5):1103-1111.[doi:10.11992/tis.202412008]
点击复制

融合图模糊信息的受限玻尔兹曼机

参考文献/References:
[1] 马世龙, 乌尼日其其格, 李小平. 大数据与深度学习综述[J]. 智能系统学报, 2016, 11(6): 728-742.
MA Shilong, WUNIRI Qiqige, LI Xiaoping. Deep learning with big data: state of the art and development[J]. CAAI transactions on intelligent systems, 2016, 11(6): 728-742.
[2] HINTON G E. On early inspiration[Z/OL]. (2024-10-09) [2024-10-20]. https://ting.eudic.net/webting/desktopplay?id=dc3354a2-85e1-11ef-8108005056866eda.
[3] 胡铭菲, 左信, 刘建伟. 深度生成模型综述[J]. 自动化学报, 2022, 48(1): 40-74.
HU Mingfei, ZUO Xin, LIU Jianwei. Survey on deep generative model[J]. Acta automatica sinica, 2022, 48(1): 40-74.
[4] ALBERICI D, CONTUCCI P, MINGIONE E. Deep Boltzmann machines: rigorous results at arbitrary depth[J]. Annales Henri poincaré, 2021, 22(8): 2619-2642.
[5] WANG Zhendong, ZENG Yong, LIU Yaodi, et al. Deep belief network integrating improved kernel-based extreme learning machine for network intrusion detection[J]. IEEE access, 2021, 9: 16062-16091.
[6] HAMMOUCHE R, ATTIA A, AKHROUF S, et al. Gabor filter bank with deep autoencoder based face recognition system[J]. Expert systems with applications, 2022, 197: 116743.
[7] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[C]//International Conference on Learning Representations. NewOrleans: ICLR, 2021: 1-22.
[8] CHEN Leiyu, LI Shaobo, BAI Qiang, et al. Review of image classification algorithms based on convolutional neural networks[J]. Remote sensing, 2021, 13(22): 4712.
[9] VRáBEL J, PO?íZKA P, KAISER J. Restricted Boltzmann machine method for dimensionality reduction of large spectroscopic data[J]. Spectrochimica acta part B: atomic spectroscopy, 2020, 167: 105849.
[10] TYAGI P K, AGRAWAL D. Automatic detection of sleep apnea from single-lead ECG signal using enhanced-deep belief network model[J]. Biomedical signal processing and control, 2023, 80: 104401.
[11] KOREN Y, RENDLE S, BELL R. Advances in collaborative filtering[M]//Recommender Systems Handbook. New York: Springer US, 2021: 91-142.
[12] 汪强龙, 高晓光, 吴必聪, 等. 受限玻尔兹曼机及其变体研究综述[J]. 系统工程与电子技术, 2024, 46(7): 2323-2345.
WANG Qianglong, GAO Xiaoguang, WU Bicong, et al. Review of research on restricted Boltzmann machine and its variants[J]. Systems engineering and electronics, 2024, 46(7): 2323-2345.
[13] GU Linyan, YANG Lihua, ZHOU Feng. Approximation properties of Gaussian-binary restricted Boltzmann machines and Gaussian-binary deep belief networks[J]. Neural networks, 2022, 153: 49-63.
[14] CHEN Zixiang, MA Wanqi, DAI Wei, et al. Conditional restricted Boltzmann machine for item recommendation[J]. Neurocomputing, 2020, 385: 269-277.
[15] 李晓慧, 汪西莉. 结合卷积受限玻尔兹曼机的CV图像分割模型[J]. 激光与光电子学进展, 2020, 57(4): 041018.
LI Xiaohui, WANG Xili. CV image segmentation model combining convolutional restricted Boltzmann machine[J]. Laser & optoelectronics progress, 2020, 57(4): 201-212.
[16] HINTON G E. Training products of experts by minimizing contrastive divergence[J]. Neural computation, 2002, 14(8): 1771-1800.
[17] LUO Weijian, JIANG Hao, HU Tianyang, et al. Training energy-based models with diffusion contrastive divergences[EB/OL]. (2023-07-04)[2024-10-20]. https://arxiv.org/abs/2307.01668.
[18] TERENIN A, SIMPSON D, DRAPER D. Asynchronous gibbs sampling[C]//International Conference on Artificial Intelligence and Statistics. [S. l. ]: PMLR, 2020: 144-154.
[19] CHEN C L P, ZHANG Chunyang, CHEN Long, et al. Fuzzy restricted Boltzmann machine for the enhancement of deep learning[J]. IEEE transactions on fuzzy systems, 2015, 23(6): 2163-2173.
[20] JANMAIJAYA M, SHUKLA A K, SETH T, et al. Interval type-2 fuzzy restricted Boltzmann machine for the enhancement of deep learning[C]//2019 IEEE International Conference on Fuzzy Systems. New Orleans: IEEE, 2019: 1-6.
[21] FENG Shuang, CHEN C L P. A fuzzy restricted Boltzmann machine: novel learning algorithms based on the crisp possibilistic mean value of fuzzy numbers[J]. IEEE transactions on fuzzy systems, 2018, 26(1): 117-130.
[22] 张健, 丁世飞, 张楠, 等. 受限玻尔兹曼机研究综述[J]. 软件学报, 2019, 30(7): 2073-2090.
ZHANG Jian, DING Shifei, ZHANG Nan, et al. Restricted Boltzmann machines: a review[J]. Journal of software, 2019, 30(7): 2073-2090.
[23] CUONG B C, KREINOVICH V. Picture fuzzy sets-a new concept for computational intelligence problems[C]//2013 Third World Congress on Information and Communication Technologies. Hanoi: IEEE, 2013: 1-6.
[24] ZHU Sijia, LIU Zhe. Distance measures of picture fuzzy sets and interval-valued picture fuzzy sets with their applications[J]. AIMS mathematics, 2023, 8(12): 29817-29848.
[25] LYU Xueqin, MENG Lingzheng, CHEN Chao, et al. Fuzzy removing redundancy restricted Boltzmann machine: improving learning speed and classification accuracy[J]. IEEE transactions on fuzzy systems, 2020, 28(10): 2495-2509.
[26] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[27] XIAO Han, RASUL K, VOLLGRAF R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms[EB/OL]. (2017-08-25)[2024-10-20]. https://arxiv.org/abs/1708.07747.
[28] COHEN G, AFSHAR S, TAPSON J, et al. EMNIST: Extending MNIST to handwritten letters[C]//2017 International Joint Conference on Neural Networks. Anchorage: IEEE, 2017: 2921-2926.
[29] CLANUWAT T, BOBER-IRIZAR M, KITAMOTO A, et al. Deep learning for classical Japanese literature[EB/OL]. (2018-12-03)[2024-10-20]. https://arxiv.org/abs/1812.01718.
[30] HSIEH P C, CHEN C P. Multi-task learning on MNIST image datasets[C]//International Conference on Learning Representations. Vancouver: OpenReview.net, 2018: 1-7.
[31] ACHARYA S, PANT A K, GYAWALI P K. Deep learning based large scale handwritten Devanagari character recognition[C]//2015 9th International Conference on Software, Knowledge, Information Management and Applications. Kathmandu: IEEE, 2015: 1-6.
[32] SOLTANZADEH H, RAHMATI M. Recognition of Persian handwritten digits using image profiles of multiple orientations[J]. Pattern recognition letters, 2004, 25(14): 1569-1576.
[33] KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[EB/OL]. (2009-04-08)[2024-12-11]. https://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf.
[34] 张艳霞. 基于受限玻尔兹曼机的深度学习模型及其应用[D]. 成都: 电子科技大学, 2016.
ZHANG Yanxia. Deep learning models and applications based on the restricted Boltzmann machine[D]. Chengdu: University of Electronic Science and Technology, 2016.
[35] GLASER P, HUANG K H, GRETTON A. Near-optimality of contrastive divergence algorithms[C]//Proceedings of the 38th International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2024: 91036-91090.
[36] ZHENG Yujun, SHENG Weiguo, SUN Xingming, et al. Airline passenger profiling based on fuzzy deep machine learning[J]. IEEE transactions on neural networks and learning systems, 28(12): 2911-2923.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[9]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[10]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]

备注/Memo

收稿日期:2024-12-11。
基金项目:国家自然科学基金项目(61350003);辽宁省教育厅高等学校基本科研项目重点攻关项目(LJKZZ20220047).
作者简介:黄晓珂,硕士研究生,主要研究方向为智能数学理论与应用。E-mail:2806153271@qq.com。;刘海涛,副教授,博士,主要研究方向为模糊数学、因素空间理论。E-mail:haitao641@163.com。;汪培庄,教授,博士生导师,中国人工智能学会会士。主要研究方向为模糊数学、因素空间理论。发表学术论文113篇。E-mail:peizhuangw@126.com。
通讯作者:刘海涛. E-mail:haitao641@163.com

更新日期/Last Update: 2025-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com