[1]王梦溪,雷涛,姜由涛,等.基于空频协同的CNN-Transformer多器官分割网络[J].智能系统学报,2025,20(5):1266-1280.[doi:10.11992/tis.202409011]
 WANG Mengxi,LEI Tao,JIANG Youtao,et al.CNN-Transformer multiorgan segmentation network based on space-frequency collaboration[J].CAAI Transactions on Intelligent Systems,2025,20(5):1266-1280.[doi:10.11992/tis.202409011]
点击复制

基于空频协同的CNN-Transformer多器官分割网络

参考文献/References:
[1] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015: 234-241.
[2] OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net: learning where to look for the pancreas[EB/OL]. (2018-05-20)[2024-09-06]. https://arxiv.org/abs/1804.03999v3.
[3] LEI Tao, SUN Rui, DU Xiaogang, et al. SGU-Net: shape-guided ultralight network for abdominal image segmentation[J]. IEEE journal of biomedical and health informatics, 2023, 27(3): 1431-1442.
[4] RUAN Jiacheng, XIE Mingye, XIANG Suncheng, et al. MEW-UNet: Multi-axis representation learning in frequency domain for medical image segmentation[EB/OL]. (2022-10-25)[2024-09-06]. https://arxiv.org/abs/2210.14007v1.
[5] 刘万军, 姜岚, 曲海成, 等. 融合CNN与Transformer的MRI脑肿瘤图像分割[J]. 智能系统学报, 2024, 19(4): 1007-1015.
LIU Wanjun, JIANG Lan, QU Haicheng, et al. MRI brain tumor image segmentation by fusing CNN and Transformer[J]. CAAI transactions on intelligent systems, 2024, 19(4): 1007-1015.
[6] 张淑军, 彭中, 李辉. SAU-Net: 基于U-Net和自注意力机制的医学图像分割方法[J]. 电子学报, 2022, 50(10): 2433-2442.
ZHANG Shujun, PENG Zhong, LI Hui. SAU-Net: medical image segmentation method based on U-Net and self-attention[J]. Acta electronica sinica, 2022, 50(10): 2433-2442.
[7] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30: 5998-6008.
[8] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[C]//International Conference on Learning Representations. NewOrleans: ICLR, 2021: 1-22.
[9] CAO Hu, WANG Yueyue, CHEN J, et al. Swin-Unet: unet-like pure Transformer for medical image segmentation[C]//Computer Vision–ECCV 2022 Workshops. Cham: Springer Nature Switzerland, 2023: 205-218.
[10] KUSHNURE D T, TALBAR S N. MS-UNet: a multi-scale UNet with feature recalibration approach for automatic liver and tumor segmentation in CT images[J]. Computerized medical imaging and graphics, 2021, 89: 101885.
[11] HUANG Xiaohong, DENG Zhifang, LI Dandan, et al. MISSFormer: an effective medical image segmentation Transformer[EB/OL]. (2021-12-19)[2024-09-06]. https://arxiv.org/abs/2109.07162v2.
[12] 雷涛, 张峻铭, 杜晓刚, 等. 基于混洗特征编码与门控解码的医学图像分割网络[J]. 电子学报, 2024, 52(12): 4142-4152.
LEI Tao, ZHANG Junming, DU Xiaogang, et al. Medical image segmentation network based on shuffled feature encoding and gated decoding[J]. Acta electronica sinica, 2024, 52(12): 4142-4152.
[13] 周新民, 熊智谋, 史长发, 等. 基于多尺度卷积调制的医学图像分割[J]. 电子学报, 2024, 52(9): 3159-3171.
ZHOU Xinmin, XIONG Zhimou, SHI Changfa, et al. Medical image segmentation based on multi-scale convolution modulation[J]. Acta electronica sinica, 2024, 52(9): 3159-3171.
[14] 彭雨彤, 梁凤梅. 融合CNN和ViT的乳腺超声图像肿瘤分割方法[J]. 智能系统学报, 2024, 19(3): 556-564.
PENG Yutong, LIANG Fengmei. Tumor segmentation method for breast ultrasound images incorporating CNN and ViT[J]. CAAI transactions on intelligent systems, 2024, 19(3): 556-564.
[15] CHEN Jieneng, LU Yongyi, YU Qihang, et al. TransUNet: Transformers make strong encoders for medical image segmentation[EB/OL]. (2021-02-08)[2024-09-06]. https://arxiv.org/abs/2102.04306v1.
[16] XU Guoping, ZHANG Xuan, HE Xinwei, et al. LeViT-UNet: make faster encoders with Transformer for medical image segmentation[C]//Pattern Recognition and Computer Vision. Singapore: Springer Nature Singapore, 2023: 42-53.
[17] JHA A, KUMAR A, PANDE S, et al. MT-UNET: a novel U-Net based multi-task architecture for visual scene understanding[C]//2020 IEEE International Conference on Image Processing. Abu Dhabi: IEEE, 2020: 2191-2195.
[18] CHEN Yuanbin, WANG Tao, TANG Hui, et al. CoTrFuse: a novel framework by fusing CNN and Transformer for medical image segmentation[J]. Physics in medicine & biology, 2023, 68(17): 175027.
[19] HEIDARI M, KAZEROUNI A, SOLTANY M, et al. HiFormer: hierarchical multi-scale representations using Transformers for medical image segmentation[C]//2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2023: 6191-6201.
[20] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Computer Vision–ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
[21] 王婷, 宣士斌, 周建亭. 融合小波变换和编解码注意力的异常检测[J]. 计算机应用研究, 2023, 40(7): 2229-2234, 2240.
WANG Ting, XUAN Shibin, ZHOU Jianting. Anomaly detection fusing wavelet transform and encoder-decoder attention[J]. Application research of computers, 2023, 40(7): 2229-2234, 2240.
[22] LEE H, KIM H E, NAM H. SRM: a style-based recalibration module for convolutional neural networks[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1854-1862.
[23] RAO K R, YIP P C. Discrete cosine transform - algorithms, advantages, applications[J]. Academic press, 2014, 34(4): 6315-6322.
[24] LEE-THORP J, AINSLIE J, ECKSTEIN I, et al. FNet: mixing tokens with Fourier transforms[EB/OL]. (2022-05-26)[2024-09-06]. https://arxiv.org/abs/2105.03824v4.
[25] PATRO B N, NAMBOODIRI V P, AGNEESWARAN V S. SpectFormer: frequency and attention is what you need in a vision Transformer[EB/OL]. (2023-04-14)[2024-09-06]. https://arxiv.org/abs/2304.06446v2.
[26] 赵亮, 刘晨, 王春艳. 位置信息增强的TransUnet医学图像分割方法[J]. 计算机科学与探索, 2025, 19(4): 976-988.
ZHAO Liang, LIU Chen, WANG Chunyan. Positional enhancement TransUnet for medical image segmentation[J]. Journal of frontiers of computer science and technology, 2025, 19(4): 976-988.
[27] 叶晋豫, 李娇, 邓红霞, 等. SwinEA: 融合边缘感知的医学图像分割网络[J]. 计算机工程与设计, 2024, 45(4): 1149-1156.
YE Jinyu, LI Jiao, DENG Hongxia, et al. SwinEA: Medical image segmentation network fused with edge-aware[J]. Computer engineering and design, 2024, 45(4): 1149-1156.
[28] AZAD R, ARIMOND R, AGHDAM E K, et al. DAE-former: dual attention-guided efficient Transformer for medical image segmentation[C]//Predictive Intelligence in Medicine. Cham: Springer Nature Switzerland, 2023: 83-95.
[29] YAN Xiangyi, TANG Hao, SUN Shanlin, et al. AFTer-UNet: axial fusion Transformer UNet for medical image segmentation[C]//2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2022: 3270-3280.
[30] XIE Yutong, ZHANG Jianpeng, SHEN Chunhua, et al. CoTr: efficiently bridging CNN and Transformer for 3D medical image segmentation[C]//Medical Image Computing and Computer Assisted Intervention. Cham: Springer International Publishing, 2021: 171-180.
[31] HONG Zhifang, CHEN Mingzhi, HU Weijie, et al. Dual encoder network with Transformer-CNN for multi-organ segmentation[J]. Medical & biological engineering & computing, 2023, 61(3): 661-671.
[32] LIU Yuzhao, HAN Liming, YAO Bin, et al. STA-Former: enhancing medical image segmentation with Shrinkage Triplet Attention in a hybrid CNN-Transformer model[J]. Signal, image and video processing, 2024, 18(2): 1901-1910.
[33] DIAKOGIANNIS F I, WALDNER F, CACCETTA P, et al. ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data[J]. ISPRS journal of photogrammetry and remote sensing, 2020, 162: 94-114.
[34] GAO Yunhe, ZHOU Mu, METAXAS D N. UTNet: a hybrid Transformer architecture for medical image segmentation[C]//Medical Image Computing and Computer Assisted Intervention. Cham: Springer International Publishing, 2021: 61-71.
[35] ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[J]. Nature methods, 2021, 18(2): 203-211.
[36] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[37] IANDOLA F, MOSKEWICZ M, KARAYEV S, et al. DenseNet: implementing efficient ConvNet descriptor Pyramids[EB/OL]. (2014-04-07)[2024-09-06]. https://arxiv.org/abs/1404.1869v1.

备注/Memo

收稿日期:2024-9-6。
基金项目:国家自然科学基金项目(62271296,62201334); 陕西省创新能力支撑计划项目(2025RS-CXTD-012); 陕西高校青年创新团队项目(23JP014, 23JP022).
作者简介:王梦溪,硕士研究生,主要研究方向为计算机视觉、机器学习。E-mail:202007020606@sust.edu.cn。;雷涛,教授,博士生导师,陕西科技大学电子信息与人工智能学院副院长,IEEE高级会员。主要研究方向为计算机视觉、机器学习。发表学术论文90余篇。E-mail:leitao@sust.edu.cn。;姜由涛,硕士研究生,主要研究方向为计算机视觉、机器学习。E-mail:2819423992@qq.com。
通讯作者:雷涛. E-mail:leitao@sust.edu.cn

更新日期/Last Update: 2025-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com