[1]胡今鸣,胡啸峰,石磊,等.基于强化学习的超高层建筑非法入侵情景推演方法[J].智能系统学报,2025,20(4):958-968.[doi:10.11992/tis.202408002]
HU Jinming,HU Xiaofeng,SHI Lei,et al.Method of unauthorized intrusion scenario simulation in super high-rise building based on reinforcement learning[J].CAAI Transactions on Intelligent Systems,2025,20(4):958-968.[doi:10.11992/tis.202408002]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第4期
页码:
958-968
栏目:
学术论文—机器学习
出版日期:
2025-08-05
- Title:
-
Method of unauthorized intrusion scenario simulation in super high-rise building based on reinforcement learning
- 作者:
-
胡今鸣1, 胡啸峰1,2,3, 石磊4, 石拓5, 滕腾1
-
1. 中国人民公安大学 信息网络安全学院, 北京 100038;
2. 中国人民公安大学 首都社会安全研究基地, 北京 100038;
3. 安全防范技术与风险评估公安部重点实验室, 北京 102623;
4. 中国传媒大学 媒体融合与传播国家重点实验室, 北京 100024;
5. 北京警察学院 公安管理系, 北京 102202
- Author(s):
-
HU Jinming1, HU Xiaofeng1,2,3, SHI Lei4, SHI Tuo5, TENG Teng1
-
1. School of Information and Cyber Security, People’s Public Security University of China, Beijing 100038, China;
2. Center for Capital Social Safety, People’s Public Security University of China, Beijing 100038, China;
3. Key Laboratory of Security Technology & Risk Assessment, Ministry of Public Security, Beijing 102623, China;
4. State Key Laboratory of Media Integration and Communication, Communication University of China, Beijing 100024, China;
5. Department of Public Security Management, Beijing Police College, Beijing 102202, China
-
- 关键词:
-
非法入侵; 情景推演; 超高层建筑; 强化学习; 贝叶斯网络; 安防系统; SARSA模型; 非线性回归
- Keywords:
-
unauthorized intrusion; scenario simulation; super high-rise building; reinforcement learning; Bayesian network; security system; SARSA model; nonlinear regression
- 分类号:
-
TP18; X937
- DOI:
-
10.11992/tis.202408002
- 文献标志码:
-
2025-1-15
- 摘要:
-
为计算超高层建筑潜在非法入侵者的“最优”入侵路径,本文提出了一种基于强化学习的情景推演方法。该方法将建筑公共走廊抽象为拓扑结构,利用贝叶斯网络计算入侵者通过每个拓扑节点的概率,结合强化学习算法获得外部人员的最优入侵路径,为超高层建筑非法入侵的高效防范提供精准依据。为验证方法的有效性,以北京市CBD地区某超高层建筑为例,将入侵终点设置为顶层,设计了3种不同的入侵情景。情景推演结果表明:在初始状态下(未进行任何优化措施),SARSA模型的训练性能最佳。优化安防系统后发现,在建筑内的层间节点增加安防系统投入最有效。该优化情景下,安防系统投入与风险值的非线性拟合结果显示,随着安防系统投入的增加,入侵风险显著降低。
- Abstract:
-
To calculate the “optimal” intrusion path of potential illegal intruders in super high-rise buildings, a scenario simulation method based on reinforcement learning is proposed in the paper. This method provides a precise basis for efficiently preventing illegal access in super high-rise buildings by abstracting the buildings’ public corridors into a topological structure, calculating the probability of an intruder passing through each node based on a Bayesian network, and exploring the optimal intrusion path by means of reinforcement learning algorithms. To validate this method, a super high-rise building in the CBD area of Beijing was taken as an example, where the intrusion endpoint was assumed as the top floor and three different intrusion scenarios were designed. Results reveal that the SARSA model has the best training performance in the initial state (without any optimization measures). After optimizing the security system, increasing security system investment at interfloor nodes within the building is the most effective. In this context, a nonlinear fit between security investment and risk values shows that as investment in a security prevent system increases, intrusion risk remarkably decreases.
备注/Memo
收稿日期:2024-8-3。
基金项目:中国人民公安大学拔尖创新人才培养研究生科研创新重点项目(2024yjsky009);国家自然科学基金项目(72174203);中国人民公安大学安全防范工程双一流专项(2023SYL08).
作者简介:胡今鸣,硕士研究生,主要研究方向为强化学习、社会公共安全风险评估。发表学术论文4篇。E-mail:hujinming2024@163.com。;胡啸峰,副教授,博士,主要研究方向为人工智能、社会公共安全风险评估。主持国家自然科学基金项目2项,发表学术论文60余篇。E-mail:huxiaofeng@ppsuc.edu.cn。;石磊,助理研究员,博士,中国人工智能学会智能服务专委会委员,主要研究方向为智能信息处理、大数据分析与挖掘、社交网络搜索及人工智能。发表学术论文20余篇。E-mail:leiky_shi@cuc.edu.cn。
通讯作者:胡啸峰. E-mail:huxiaofeng@ppsuc.edu.cn
更新日期/Last Update:
1900-01-01