[1]赵文清,蔡建颖,李赛辰.基于阶梯式特征融合的输电线路外力破坏检测[J].智能系统学报,2025,20(5):1082-1092.[doi:10.11992/tis.202406045]
 ZHAO Wenqing,CAI Jianying,LI Saichen.Detection of external force damage of transmission lines based on stepwise feature fusion[J].CAAI Transactions on Intelligent Systems,2025,20(5):1082-1092.[doi:10.11992/tis.202406045]
点击复制

基于阶梯式特征融合的输电线路外力破坏检测

参考文献/References:
[1] 胡毅, 刘凯, 吴田, 等. 输电线路运行安全影响因素分析及防治措施[J]. 高电压技术, 2014, 40(11): 3491-3499.
HU Yi, LIU Kai, WU Tian, et al. Analysis of influential factors on operation safety of transmission line and countermeasures[J]. High voltage engineering, 2014, 40(11): 3491-3499.
[2] 崔岩, 方春华, 文中, 等. 基于VMD-WOA-ELM的电缆外力破坏振动信号在线识别[J]. 电子测量技术, 2023, 46(2): 121-129.
CUI Yan, FANG Chunhua, WEN Zhong, et al. Online identification of cable external force damage vibration signal based on VMD-WOA-ELM[J]. Electronic measurement technology, 2023, 46(2): 121-129.
[3] 黄然, 方正云, 马御棠, 等. 基于变化检测的输电走廊外力破坏隐患区域识别[J]. 航天返回与遥感, 2022, 43(3): 138-148.
HUANG Ran, FANG Zhengyun, MA Yutang, et al. Hidden danger area identification of outside force destroy in transmission corridor based on change detection[J]. Spacecraft recovery & remote sensing, 2022, 43(3): 138-148.
[4] 蓝向州, 卢泉, 陈桥. 面向边缘计算的轻量化外力破坏目标检测算法[J]. 广西大学学报(自然科学版), 2022, 47(5): 1363-1373.
LAN Xiangzhou, LU Quan, CHEN Qiao. External force damage targets lightweight detection algorithm for edge computing[J]. Journal of Guangxi university (natural science edition), 2022, 47(5): 1363-1373.
[5] LUO Yanhong, YU Xue, YANG Dongsheng, et al. A survey of intelligent transmission line inspection based on unmanned aerial vehicle[J]. Artificial intelligence review, 2023, 56(1): 173-201.
[6] 康重庆, 杜尔顺, 郭鸿业, 等. 新型电力系统的六要素分析[J]. 电网技术, 2023, 47(5): 1741-1750.
KANG (C /Z)Q, DU Ershun, GUO Hongye, et al. Primary exploration of six essential factors in new power system[J]. Power system technology, 2023, 47(5): 1741-1750.
[7] ZOU Zhengxia, CHEN Keyan, SHI Zhenwei, et al. Object detection in 20 years: a survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276.
[8] WEI Liu, DRAGOMIR A, DUMITRU E, et al. SSD: single shot multi-box detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[9] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[10] 王晓林, 苏松志, 刘晓颖, 等. 一种基于级联神经网络的飞机检测方法[J]. 智能系统学报, 2020, 15(4): 697-704.
WANG Xiaolin, SU Songzhi, LIU Xiaoying, et al. Cascade convolutional neural networks for airplane detection[J]. CAAI transactions on intelligent systems, 2020, 15(4): 697-704.
[11] DUAN Kaiwen, BAI Song, XIE Lingxi, et al. CenterNet: keypoint triplets for object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6569-6578.
[12] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: fully convolutional one-stage object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9627-9636.
[13] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517-6525.
[14] REDMON J, FARHADI A. YOLOv3: an incremental improvement[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1804-2767.
[15] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 7464-7475.
[16] 程德强, 马尚, 寇旗旗, 等. 基于YOLOv4改进特征融合及全局感知的目标检测算法[J]. 智能系统学报, 2024, 19(2): 325-334.
CHENG Deqiang, MA Shang, KOU Qiqi, et al. Target detection algorithm for improving feature fusion and global perception based on YOLOv4[J]. CAAI transactions on intelligent systems, 2024, 19(2): 325-334.
[17] ZHAO Zhenbing, QI Hongyu, QI Yincheng, et al. Detection method based on automatic visual shape clustering for pin-missing defect in transmission lines[J]. IEEE transactions on instrumentation and measurement, 2020, 69(9): 6080-6091.
[18] 郝帅, 马瑞泽, 赵新生, 等. 基于卷积块注意模型的YOLOv3输电线路故障检测方法[J]. 电网技术, 2021, 45(8): 2979-2987.
HAO Shuai, MA Ruize, ZHAO Xinsheng, et al. Fault detection of YOLOv3 transmission line based on convolutional block attention model[J]. Power system technology, 2021, 45(8): 2979-2987.
[19] 邱志斌, 朱轩, 廖才波, 等. 基于目标检测的电网涉鸟故障相关鸟种智能识别[J]. 电网技术, 2022, 46(1): 369-377.
QIU Zhibin, ZHU Xuan, LIAO Caibo, et al. Intelligent recognition of bird species related to power grid faults based on object detection[J]. Power system technology, 2022, 46(1): 369-377.
[20] 孙阳, 李佳. 基于通道剪枝的YOLOv7-tiny输电线路异物检测算法[J]. 计算机工程与应用, 2024, 60(14): 319-328.
SUN Yang, LI Jia. YOLOv7-tiny transmission line foreign object detection algorithm based on channel pruning[J]. Computer engineering and applications, 2024, 60(14): 319-328.
[21] 王宇博, 尚军利, 张烨, 等. 基于改进YOLOv7的实时输电导线缺陷检测方法[J]. 南方电网技术, 2023, 17(12): 127-134.
WANG Yubo, SHANG Junli, ZHANG Ye, et al. Real-time transmission wire defect detection method based on improved YOLOv7[J]. Southern power system technology, 2023, 17(12): 127-134.
[22] 张铭泉, 邢福德, 刘冬. 基于改进Faster R-CNN的变电站设备外部缺陷检测[J]. 智能系统学报, 2024, 19(2): 290-298.
ZHANG Mingquan, XING Fude, LIU Dong. External defect detection of transformer substation equipment based on improved Faster R-CNN[J]. CAAI transactions on intelligent systems, 2024, 19(2): 290-298.
[23] AZAD R, NIGGEMEIER L, HüTTEMANN M, et al. Beyond self-attention: deformable large kernel attention for medical image segmentation[C]//2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2024: 1276-1286.
[24] ZHENG Zhaohui, WANG Ping, REN Dongwei, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE transactions on cybernetics, 2022, 52(8): 8574-8586.
[25] ZHANG Yifan, REN Weiqiang, ZHANG Zhang, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[26] SALSCHEIDER N O. FeatureNMS: non-maximum suppression by learning feature embeddings[C]//2020 25th International Conference on Pattern Recognition. Milan: IEEE, 2021: 7848-7854.
[27] EVERINGHAM M, ALI ESLAMI S M, VAN GOOL L, et al. The pascal visual object classes challenge: a retrospective[J]. International journal of computer vision, 2015, 111(1): 98-136.
[28] ZHAO Yian, LYU Wenyu, XU Shangliang, et al. DETRs beat YOLOs on real-time object detection[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 16965-16974.
相似文献/References:
[1]胡光龙,秦世引.动态成像条件下基于SURF和Mean shift的运动目标高精度检测[J].智能系统学报,2012,7(1):61.
 HU Guanglong,QIN Shiyin.High precision detection of a mobile object under dynamic imaging based on SURF and Mean shift[J].CAAI Transactions on Intelligent Systems,2012,7():61.
[2]韩峥,刘华平,黄文炳,等.基于Kinect的机械臂目标抓取[J].智能系统学报,2013,8(2):149.[doi:10.3969/j.issn.1673-4785.201212038]
 HAN Zheng,LIU Huaping,HUANG Wenbing,et al.Kinect-based object grasping by manipulator[J].CAAI Transactions on Intelligent Systems,2013,8():149.[doi:10.3969/j.issn.1673-4785.201212038]
[3]韩延彬,郭晓鹏,魏延文,等.RGB和HSI颜色空间的一种改进的阴影消除算法[J].智能系统学报,2015,10(5):769.[doi:10.11992/tis.201410010]
 HAN Yanbin,GUO Xiaopeng,WEI Yanwen,et al.An improved shadow removal algorithm based on RGB and HSI color spaces[J].CAAI Transactions on Intelligent Systems,2015,10():769.[doi:10.11992/tis.201410010]
[4]曾宪华,易荣辉,何姗姗.流形排序的交互式图像分割[J].智能系统学报,2016,11(1):117.[doi:10.11992/tis.201505037]
 ZENG Xianhua,YI Ronghui,HE Shanshan.Interactive image segmentation based on manifold ranking[J].CAAI Transactions on Intelligent Systems,2016,11():117.[doi:10.11992/tis.201505037]
[5]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]
[6]莫宏伟,汪海波.基于Faster R-CNN的人体行为检测研究[J].智能系统学报,2018,13(6):967.[doi:10.11992/tis.201801025]
 MO Hongwei,WANG Haibo.Research on human behavior detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2018,13():967.[doi:10.11992/tis.201801025]
[7]宁欣,李卫军,田伟娟,等.一种自适应模板更新的判别式KCF跟踪方法[J].智能系统学报,2019,14(1):121.[doi:10.11992/tis.201806038]
 NING Xin,LI Weijun,TIAN Weijuan,et al.Adaptive template update of discriminant KCF for visual tracking[J].CAAI Transactions on Intelligent Systems,2019,14():121.[doi:10.11992/tis.201806038]
[8]伍鹏瑛,张建明,彭建,等.多层卷积特征的真实场景下行人检测研究[J].智能系统学报,2019,14(2):306.[doi:10.11992/tis.201710019]
 WU Pengying,ZHANG Jianming,PENG Jian,et al.Research on pedestrian detection based on multi-layer convolution feature in real scene[J].CAAI Transactions on Intelligent Systems,2019,14():306.[doi:10.11992/tis.201710019]
[9]刘召,张黎明,耿美晓,等.基于改进的Faster R-CNN高压线缆目标检测方法[J].智能系统学报,2019,14(4):627.[doi:10.11992/tis.201905026]
 LIU Zhao,ZHANG Liming,GENG Meixiao,et al.Object detection of high-voltage cable based on improved Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2019,14():627.[doi:10.11992/tis.201905026]
[10]单义,杨金福,武随烁,等.基于跳跃连接金字塔模型的小目标检测[J].智能系统学报,2019,14(6):1144.[doi:10.11992/tis.201905041]
 SHAN Yi,YANG Jinfu,WU Suishuo,et al.Skip feature pyramid network with a global receptive field for small object detection[J].CAAI Transactions on Intelligent Systems,2019,14():1144.[doi:10.11992/tis.201905041]

备注/Memo

收稿日期:2024-6-27。
基金项目:国家自然科学基金项目 (62371188); 河北省自然科学基金项目(F2021502013).
作者简介:赵文清,教授,博士,主要研究方向为人工智能与图像处理。获河北省科技进步二等奖、三等奖各1项。发表学术论文 50 余篇。E-mail:zhaowenqing@ncepu.edu.cn。;蔡建颖,硕士研究生,主要研究方向为图像目标检测。E-mail:937709507@qq.com。;李赛辰,硕士研究生,主要研究方向为图像目标检测。E-mail:WantedManOrz@outlook.com。
通讯作者:赵文清. E-mail:zhaowenqing@ncepu.edu.cn

更新日期/Last Update: 2025-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com