[1]魏柏淳,姜峰,张松涛,等.基于耳周肌电信号的默念口令识别方法[J].智能系统学报,2025,20(4):894-904.[doi:10.11992/tis.202406017]
WEI Baichun,JIANG Feng,ZHANG Songtao,et al.Method for silent command recognition based on periauricular EMG signals[J].CAAI Transactions on Intelligent Systems,2025,20(4):894-904.[doi:10.11992/tis.202406017]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第4期
页码:
894-904
栏目:
学术论文—机器学习
出版日期:
2025-08-05
- Title:
-
Method for silent command recognition based on periauricular EMG signals
- 作者:
-
魏柏淳1, 姜峰2, 张松涛1, 张琦1, 段锦楠1, 王修来3
-
1. 哈尔滨工业大学 生命科学与医学学部, 黑龙江 哈尔滨 150000;
2. 南京信息工程大学 未来技术学院, 江苏 南京 211800;
3. 东部战区总医院, 江苏 南京 210018
- Author(s):
-
WEI Baichun1, JIANG Feng2, ZHANG Songtao1, ZHANG Qi1, DUAN Jinnan1, WANG Xiulai3
-
1. Department of Life Science and Medicine, Harbin Institute of Technology, Harbin 150000, China;
2. Nanjing University of Information Science and Technology, School of Future Technology, Nanjing 211800, China;
3. General Hospital of Eastern Theater, Nanjing 210018, China
-
- 关键词:
-
人工智能; 模式识别; 人机交互; 神经人机接口; 人体意图解码; 默念口令识别; 肌电信号处理; 神经网络
- Keywords:
-
artificial intelligence; pattern recognition; human-computer interaction; neural human-machine interface; human intent decoding; silent command recognition; EMG processing; neural networks
- 分类号:
-
TP181
- DOI:
-
10.11992/tis.202406017
- 文献标志码:
-
2025-4-8
- 摘要:
-
智能设备的普及促使可穿戴人机交互技术需求日益增加。为提高用户接受度,人机交互技术对交互易用性与隐蔽性要求较高。本文提出基于耳周肌电信号的默念口令识别方法。该方法易于与集成生理电采集的耳机设备结合,实现无声操控智能设备,减少社交尴尬。具体地,本文首先确定并构建口令经验原则,筛选最优口令集。其次,根据单通道信噪比和分类准确率选择最优耳周传感器位置。再次,提出基于CNN-Transformer结构的识别模型构建耳周肌电信号与默念口令的时空映射。最后,大量实验评估方法可行性和稳定性。结果表明,本文方法平均准确率91.18%,优于相关任务的先进模型,且在命令变形和头部运动下表现稳定。本文方法奠定了默念口令识别商业产品的技术基础。
- Abstract:
-
The widespread use of smart devices has led to an increasing demand for wearable human–computer interaction technologies. To improve user acceptance, human–computer interaction technologies require high levels of interaction usability and concealment. This paper proposes a method for silent command recognition based on periauricular EMG signals. This method is easy to integrate with headphones equipped with integrated physiological signal acquisition, enables silent control of smart devices, and reduces social awkwardness. First, the command empirical principles are determined and constructed, and then the optimal command set is selected through screening. Second, the optimal periauricular sensor positions are chosen based on single-channel signal-to-noise ratio and classification accuracy. Third, a recognition model based on the CNN–Transformer structure is proposed to learn the spatiotemporal mapping between periauricular EMG signals and silent commands. Finally, extensive experiments evaluate the feasibility and stability of this method. Results demonstrate that the average accuracy of this method is 91.18%. The proposed method is superior to advanced models in similar tasks and is stable under command deformation and head motion. This method lays the technical foundation for commercial products of silent command recognition.
备注/Memo
收稿日期:2024-6-11。
基金项目:江苏省科技计划项目(BE2021086);中央引导地方科技发展专项项目(2024ZYD0266).
作者简介:魏柏淳,助理研究员,博士,主要研究方向为人机交互、可穿戴计算与外骨骼机器人。发表学术论文17篇。E-mail:bcwei@hit.edu.cn。;姜峰,教授,博士,主要研究方向为视频压缩、可穿戴计算、多智能体博弈、外骨骼机器人。主持国家自然科学基金面上项目2项、省部级项目5项,发表学术论文40余篇。E-mail:fjiang@hit.edu.cn。;王修来,教授,博士,主要研究方向为人力资源管理与信息不对称、大数据挖掘与分析和数据智能应用。E-mail:wangxiulai@126.com。
通讯作者:王修来. E-mail:wangxiulai@126.com
更新日期/Last Update:
1900-01-01