[1]邢文来,吴润秀,肖人彬,等.决策变量分组优化的多目标萤火虫算法[J].智能系统学报,2025,20(4):838-857.[doi:10.11992/tis.202406005]
XING Wenlai,WU Runxiu,XIAO Renbin,et al.A multi-objective firefly algorithm with group optimization of decision variables[J].CAAI Transactions on Intelligent Systems,2025,20(4):838-857.[doi:10.11992/tis.202406005]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第4期
页码:
838-857
栏目:
学术论文—机器学习
出版日期:
2025-08-05
- Title:
-
A multi-objective firefly algorithm with group optimization of decision variables
- 作者:
-
邢文来1,2,3, 吴润秀1,2,3, 肖人彬4, 钟劲文1,2,3, 赵嘉1,2,3
-
1. 江西水利电力大学 信息工程学院, 江西 南昌 330099;
2. 江西省水利大数据智能处理与预警技术工程研究中心, 江西 南昌, 330099;
3. 南昌市智慧城市物联感知与协同计算重点实验室, 江西 南昌 330099;
4. 华中科技大学 人工智能与自动化学院, 湖北 武汉 430074
- Author(s):
-
XING Wenlai1,2,3, WU Runxiu1,2,3, XIAO Renbin4, ZHONG Jinwen1,2,3, ZHAO Jia1,2,3
-
1. School of Information Engineering, Jiangxi University of Water Resources and Electric Power, Nanchang 330099, China;
2. Jiangxi Province Engineering Research Center for Intelligent Processing and Early Warning Technology of Water Conservancy Big Data, Nanchang 330099, China;
3. Nanchang Key Laboratory of IoT Perception and Collaborative Computing for Smart City, Nanchang 330099, China;
4. School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
-
- 关键词:
-
多目标优化问题; 多目标萤火虫算法; 变量分组; 学习行为; 变异算子; 档案截断; 收敛速度; 寻优精度
- Keywords:
-
multi-objective optimization problems; multi-objective firefly algorithm; variable grouping; learning behaviour; mutation operator; archive truncation; convergence speed; optimization accuracy
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.202406005
- 文献标志码:
-
2025-2-26
- 摘要:
-
多目标萤火虫算法采用整体维度更新策略,常因某几维变量上优化效果不佳,导致算法收敛速度慢和寻优精度低。针对上述问题,本文提出基于决策变量分组优化的多目标萤火虫算法(multi-objective firefly algorithm with group optimization of decision variables, MOFA-GD)。引入决策变量分组机制,根据各变量对算法性能的不同影响,将整体决策变量划分成收敛性变量组和多样性变量组;设计决策变量分组优化模型,利用学习行为优化收敛性变量组,加快种群收敛速度,非均匀变异算子优化多样性变量组,避免种群过早收敛,逐渐减小的变异幅度引导种群局部开发,提升算法寻优精度;采用档案截断策略维护外部档案,精准删除拥挤个体,从而保持外部档案的多样性。实验结果表明:MOFA-GD表现出优秀的收敛速度和寻优精度,获得了均匀分布的Pareto解集。本文所提算法为求解多目标优化问题提供了一种高效且可靠的解决方案。
- Abstract:
-
Multi-objective firefly algorithm adopts an overall dimension update strategy, which often results in slow convergence and poor optimization accuracy due to inadequate optimization effects on certain dimensions. To address these problems, this paper proposes a multi-objective firefly algorithm with group optimization of decision variables(MOFA-GD). Firstly, it introduces a decision variable grouping mechanism, dividing the entire set of decision variables into a convergence variable group and a diversity variable group based on different impacts of each variable on the algorithm’s performance. Secondly, it designs a decision variable grouping optimization model, utilizing learning behavior to optimize the convergence variable group to accelerate the population’s convergence speed, while using a non-uniform mutation operator to optimize the diversity variable group to prevent premature convergence. A gradually decreasing mutation amplitude guides local exploitation by the population, thereby enhancing the algorithm’s optimization accuracy. Finally, it adopts an archive truncation strategy to maintain the external archive, accurately removing crowded individuals to preserve diversity of the external archive. Experimental results show that MOFA-GD demonstrates excellent convergence speed and optimization accuracy, achieving a uniformly distributed Pareto optimal solution set. The proposed algorithm provides a high-efficiency and reliable solution for solving multi-objective optimization problems.
备注/Memo
收稿日期:2024-6-3。
基金项目:国家自然科学基金项目(62466037);南昌市重大科技攻关项目(2024zdxm002, 2024zdxm010).
作者简介:邢文来,硕士研究生,主要研究方向为群智能算法。E-mail:xwl9464@yeah.net。;吴润秀,教授,主要研究方向为群智能算法及应用、大数据与人工智能。发表学术论文30余篇。E-mail:wrx@nit.edu.cn。;肖人彬,教授,博士生导师,主要研究方向为群体智能、涌现计算、复杂系统建模与仿真。主持国家自然科学基金项目11项,获教育部自然科学奖1项、湖北省自然科学奖及科技进步奖4项。发表学术论文300余篇,出版学术专著和教材10余部。E-mail: rbxiao@hust.edu.cn。
通讯作者:吴润秀. E-mail:wrx@nit.edu.cn
更新日期/Last Update:
1900-01-01