[1]沈朕宇,朱凤华,王知学,等.基于高效特征提取和大感受野的无人机航拍图像目标检测[J].智能系统学报,2025,20(4):813-821.[doi:10.11992/tis.202405001]
 SHEN Zhenyu,ZHU Fenghua,WANG Zhixue,et al.Uav aerial image target detection based on high-efficiency feature extraction and large receptive field[J].CAAI Transactions on Intelligent Systems,2025,20(4):813-821.[doi:10.11992/tis.202405001]
点击复制

基于高效特征提取和大感受野的无人机航拍图像目标检测

参考文献/References:
[1] 何宇豪, 易明发, 周先存, 等. 基于改进的Yolov5的无人机图像小目标检测[J]. 智能系统学报, 2024, 19(3): 635-645.
HE Yuhao, YI Mingfa, ZHOU Xiancun, et al. UAV image small-target detection based on improved Yolov5[J]. CAAI transactions on intelligent systems, 2024, 19(3): 635-645.
[2] 刘威, 靳宝, 周璇, 等. 基于特征融合及自适应模型更新的相关滤波目标跟踪算法[J]. 智能系统学报, 2020, 15(4): 714-721.
LIU Wei, JIN Bao, ZHOU Xuan, et al. Correlation filter target tracking algorithm based on feature fusion and adaptive model updating[J]. CAAI transactions on intelligent systems, 2020, 15(4): 714-721.
[3] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
[4] TAN Ling, WU Hui, XU Zifeng, et al. Multi-object garbage image detection algorithm based on SP-SSD[J]. Expert systems with applications, 2025, 263: 125773.
[5] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(2): 318-327.
[6] CUI Jian, ZHANG Xinle, ZHANG Jiahuan, et al. Weed identification in soybean seedling stage based on UAV images and Faster R-CNN[J]. Computers and electronics in agriculture, 2024, 227: 109533.
[7] KARAKO K, MIHARA Y, ARITA J, et al. Automated liver tumor detection in abdominal ultrasonography with a modified faster region-based convolutional neural networks (Faster R-CNN) architecture[J]. Hepatobiliary surgery and nutrition, 2022, 11(5): 675-683.
[8] 秦振, 李学伟, 刘宏哲. 基于改进SSD的鲁棒小目标检测算法[J]. 东北师大学报(自然科学版), 2023, 55(4): 59-66.
QIN Zhen, LI Xuewei, LIU Hongzhe. Robust small tar-get detection algorithm based on improved SSD[J]. Journal of Northeast Normal University(natural science edition), 2023, 55(4): 59-66.
[9] LEE S S, LIM L G, PALAIAHNAKOTE S, et al. Oil palm tree detection in UAV imagery using an enhanced RetinaNet[J]. Computers and electronics in agriculture, 2024, 227: 109530.
[10] 邓姗姗, 黄慧, 马燕. 基于改进Faster R-CNN的小目标检测算法[J]. 计算机工程与科学, 2023, 45(5): 869-877.
DENG Shanshan, HUANG Hui, MA Yan. A small object detection algorithm based on improved Faster R-CNN[J]. Computer engineering & science, 2023, 45(5): 869-877.
[11] 吴明杰, 云利军, 陈载清, 等. 改进YOLOv5s的无人机视角下小目标检测算法[J]. 计算机工程与应用, 2019, 60(2): 191-199.
WU Mingjie, YUN Lijun, CHEN Zaiqing, et al. Improved YOLOv5s small target detection algorithm in UAV view[J]. Computer engineering and applications, 2019, 60(2): 191-199.
[12] WANG Xin, HE Ning, HONG Chen, et al. Improved YOLOX-X based UAV aerial photography object detection algorithm[J]. Image and vision computing, 2023, 135: 104697.
[13] 牛为华, 魏雅丽. 基于改进YOLOv 7的航拍小目标检测算法[J]. 电光与控制, 2024, 31(1): 117-122.
NIU Weihua, WEI Yali. Small target detection in aerial photography images based on improved YOLOv7 algorithm[J]. Electronics optics & control, 2024, 31(1): 117-122.
[14] TERVEN J, CóRDOVA-ESPARZA D M, ROMERO-GONZáLEZ J A. A comprehensive review of YOLO architectures in computer vision: from YOLOv1 to YOLOv8 and YOLO-NAS[J]. Machine learning and knowledge extraction, 2023, 5(4): 1680-1716.
[15] KRIEGEL J, DEJAM J, DURTH H, et al. Zur strafbarkeit von datenfunden im darknet[J]. Datenschutz und datensicherheit-DuD, 2024, 48(12): 769-774.
[16] SHEN Kenan, ZHAO Dongbiao. Fault analysis and fault degree evaluation via an improved ResNet method for aircraft hydraulic system[J]. Scientific reports, 2025, 15: 4132.
[17] FENG Dapeng, ZHUANG Xuebin, CHEN Zhiqiang, et al. Position information encoding FPN for small object detection in aerial images[J]. Neural computing and applications, 2024, 36(26): 16023-16035.
[18] LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
[19] 伍麟, 郝鸿宇, 宋友. 基于计算机视觉的工业金属表面缺陷检测综述[J]. 自动化学报, 2024, 50(7): 1261-1283.
WU Lin, HAO Hongyu, SONG You. A review of industrial metal surface defect detection based on computer vision [J]. IEEE/CAA journal of automatica sinica, 2019, 50(7): 1261-1283.
[20] SUNKARA R, LUO Tie. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[EB/OL]. (2022-08-07)[2024-04-01]. https://arxiv.org/abs/2208.03641.
[21] DING Zhipeng, WANG Ben, SUN Shuifa, et al. Improved SmapGAN remote sensing image map generation based on multi-head self-attention and carafe[J]. Journal of applied remote sensing, 2024, 18(1): 014526.
[22] HOU Yue, ZHANG Zhihao, DU Lixia, et al. A fully locally selective large kernel network for traffic video detection[J]. Measurement, 2025, 242: 115779.
[23] WANG Chenghao, LUO Zhongqiang, QI Ziyuan. Transformer oil leakage detection with sampling-WIoU module[J]. The journal of supercomputing, 2024, 80(6): 7349-7368.
[24] HUANG Zixin, TAO Xuesong, LIU Xinyuan. NAN-DETR: noising multi-anchor makes DETR better for object detection[J]. Frontiers in neurorobotics, 2024, 18: 1484088.
[25] MARAPATLA A D K, ILAVARASAN E. An effective attack detection framework using multi-scale depth-wise separable 1DCNN via fused grasshopper-based lemur optimizer in IoT routing system[J]. Intelligent decision technologies, 18(3): 1741-1762.
[26] WANG Xin, HE Ning, HONG Chen, et al. YOLO-ERF: lightweight object detector for UAV aerial images[J]. Multimedia systems, 2023, 29(6): 3329-3339.
[27] ZHU Xingfei, WANG Qimeng, ZHANG Bufan, et al. An improved feature enhancement CenterNet model for small object defect detection on metal surfaces[J]. Advanced theory and simulations, 2024, 7(8): 2301230.
[28] NAWAZ M, NAZIR T, MASOOD M, et al. Analysis of brain MRI images using improved CornerNet approach[J]. Diagnostics, 2021, 11(10): 1856.
[29] WANG Zhaodi, YANG Shuqiang, QIN Huafeng, et al. CCW-YOLO: a modified YOLOv5s network for pedestrian detection in complex traffic scenes[J]. Information, 2024, 15(12): 762.
[30] ZHANG Hongtao, ZHENG Li, TAN Lian, et al. YOLOX-S-TKECB: a Holstein cow identification detection algorithm[J]. Agriculture, 2024, 14(11): 1982.
相似文献/References:
[1]赵文清,周震东,翟永杰.基于反卷积和特征融合的SSD小目标检测算法[J].智能系统学报,2020,15(2):310.[doi:10.11992/tis.201905035]
 ZHAO Wenqing,ZHOU Zhendong,ZHAI Yongjie.SSD small target detection algorithm based on deconvolution and feature fusion[J].CAAI Transactions on Intelligent Systems,2020,15():310.[doi:10.11992/tis.201905035]
[2]赵文清,孔子旭,赵振兵.隔级融合特征金字塔与CornerNet相结合的小目标检测[J].智能系统学报,2021,16(1):108.[doi:10.11992/tis.202004033]
 ZHAO Wenqing,KONG Zixu,ZHAO Zhenbing.Small target detection based on a combination of feature pyramid and CornerNet[J].CAAI Transactions on Intelligent Systems,2021,16():108.[doi:10.11992/tis.202004033]
[3]毛莺池,唐江红,王静,等.基于Faster R-CNN的多任务增强裂缝图像检测方法[J].智能系统学报,2021,16(2):286.[doi:10.11992/tis.201910004]
 MAO Yingchi,TANG Jianghong,WANG Jing,et al.Multi-task enhanced dam crack image detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2021,16():286.[doi:10.11992/tis.201910004]
[4]齐鹏宇,王洪元,张继,等.基于改进FCOS的拥挤行人检测算法[J].智能系统学报,2021,16(4):811.[doi:10.11992/tis.202010012]
 QI Pengyu,WANG Hongyuan,ZHANG Ji,et al.Crowded pedestrian detection algorithm based on improved FCOS[J].CAAI Transactions on Intelligent Systems,2021,16():811.[doi:10.11992/tis.202010012]
[5]李海丰,李纪霖,王怀超,等.复杂机场道面外来异物高精度实时检测算法[J].智能系统学报,2023,18(3):525.[doi:10.11992/tis.202110014]
 LI Haifeng,LI Jilin,WANG Huaichao,et al.High-precision real-time detection algorithm for foreign object debris on complex airport pavements[J].CAAI Transactions on Intelligent Systems,2023,18():525.[doi:10.11992/tis.202110014]
[6]何宇豪,易明发,周先存,等.基于改进的Yolov5的无人机图像小目标检测[J].智能系统学报,2024,19(3):635.[doi:10.11992/tis.202210032]
 HE Yuhao,YI Mingfa,ZHOU Xiancun,et al.UAV image small-target detection based on improved Yolov5[J].CAAI Transactions on Intelligent Systems,2024,19():635.[doi:10.11992/tis.202210032]

备注/Memo

收稿日期:2024-5-3。
基金项目:国家自然科学基金项目(U24A20277); 北京市自然科学基项目(L241016); 重庆市交通科技项目(CQJT-CZKJ2024-04).
作者简介:沈朕宇,硕士研究生,主要研究方向为图像处理与目标检测。E-mail:2216825930@qq.com。;朱凤华,副研究员,博士,主要研究方向为智能交通、云计算与大数据分析。E-mail:fenghua.zhu@ia.ac.cn。;熊刚,研究员、博士生导师,主要研究方向为人工智能、智能控制与管理。获吴文俊人工智能奖、中国自动化学会科技奖等10余项。发表学术论文450余篇,出版专著共3部,授权PCT 6项,授权专利90余项,登记软著90余项。E-mail:gang.xiong@ia.ac.cn。
通讯作者:熊刚. E-mail:gang.xiong@ia.ac.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com