[1]沈朕宇,朱凤华,王知学,等.基于高效特征提取和大感受野的无人机航拍图像目标检测[J].智能系统学报,2025,20(4):813-821.[doi:10.11992/tis.202405001]
SHEN Zhenyu,ZHU Fenghua,WANG Zhixue,et al.Uav aerial image target detection based on high-efficiency feature extraction and large receptive field[J].CAAI Transactions on Intelligent Systems,2025,20(4):813-821.[doi:10.11992/tis.202405001]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第4期
页码:
813-821
栏目:
学术论文—机器学习
出版日期:
2025-08-05
- Title:
-
Uav aerial image target detection based on high-efficiency feature extraction and large receptive field
- 作者:
-
沈朕宇1, 朱凤华2, 王知学1, 沈震2, 熊刚2
-
1. 山东交通学院 轨道交通学院, 山东 济南 250300;
2. 中国科学院自动化研究所, 多模态人工智能系统全国重点实验室, 北京 100190
- Author(s):
-
SHEN Zhenyu' target="_blank" rel="external">SHEN Zhenyu1, ZHU Fenghua2, WANG Zhixue1, SHEN Zhen2, XIONG Gang2
-
1. School of Rail Transit, Shandong Jiaotong University, Ji’nan 250300, China;
2. National Key Laboratory of MultiModal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
-
- 关键词:
-
无人机航拍图像; 小目标检测; 特征提取; 多尺度变化; YOLOv8; 上下文信息; 感受野; 损失函数
- Keywords:
-
drone aerial images; small target detection; feature extraction; multi-scale variation; YOLOv8; context information; receptive field; loss function
- 分类号:
-
TP391.4
- DOI:
-
10.11992/tis.202405001
- 文献标志码:
-
2025-2-26
- 摘要:
-
针对无人机航拍图像中存在小目标、目标遮挡、背景复杂的问题,提出一种基于高效特征提取和大感受野的目标检测网络(efficient feature and large receptive field network, EFLF-Net)。通过优化检测层架构降低小目标漏检率;在主干网络融合新的构建模块以提升特征提取效率;引入内容感知特征重组模块和大型选择性核网络,增强颈部网络对遮挡目标的上下文感知能力;采用Wise-IoU损失函数优化边界框回归稳定性。在VisDrone2019数据集上的实验结果表明,EFLF-Net较基准模型在平均精度上提高了5.2%。与已有代表性的目标检测算法相比,该方法对存在小目标、目标相互遮挡和复杂背景的无人机航拍图像有更好的检测效果。
- Abstract:
-
Aiming at the problems of small targets, target occlusion and complex background in UAV aerial images, a target detection network based on high-efficiency feature extraction and large receptive field (EFLF-Net) was proposed. Firstly, the missed detection rate of small targets was reduced by optimizing the detection layer architecture. Then, the new building blocks were integrated in the backbone network to improve the efficiency of feature extraction. Then, a content-aware feature recombination module and a large selective kernel network were introduced to enhance the context-aware ability of the neck network for occluded targets. Finally, the Wise-IoU loss function was used to optimize the bounding box regression stability. Experimental results on the VisDrone2019 dataset show that EFLF-Net improves the average precision by 5.2% compared with the basic algorithm. Compared with the existing representative target detection algorithms, the proposed method has better detection effects for UAV aerial images with small targets, mutual occlusion of targets and complex backgrounds.
备注/Memo
收稿日期:2024-5-3。
基金项目:国家自然科学基金项目(U24A20277); 北京市自然科学基项目(L241016); 重庆市交通科技项目(CQJT-CZKJ2024-04).
作者简介:沈朕宇,硕士研究生,主要研究方向为图像处理与目标检测。E-mail:2216825930@qq.com。;朱凤华,副研究员,博士,主要研究方向为智能交通、云计算与大数据分析。E-mail:fenghua.zhu@ia.ac.cn。;熊刚,研究员、博士生导师,主要研究方向为人工智能、智能控制与管理。获吴文俊人工智能奖、中国自动化学会科技奖等10余项。发表学术论文450余篇,出版专著共3部,授权PCT 6项,授权专利90余项,登记软著90余项。E-mail:gang.xiong@ia.ac.cn。
通讯作者:熊刚. E-mail:gang.xiong@ia.ac.cn
更新日期/Last Update:
1900-01-01