[1]张越,王子翔,周博,等.基于机器学习的线上线下联合服务模式下医生排班算法[J].智能系统学报,2025,20(4):800-812.[doi:10.11992/tis.202404032]
ZHANG Yue,WANG Zixiang,ZHOU Bo,et al.Algorithms for physician scheduling under the online and offline combined service mode based on machine learning[J].CAAI Transactions on Intelligent Systems,2025,20(4):800-812.[doi:10.11992/tis.202404032]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第4期
页码:
800-812
栏目:
学术论文—机器学习
出版日期:
2025-08-05
- Title:
-
Algorithms for physician scheduling under the online and offline combined service mode based on machine learning
- 作者:
-
张越1, 王子翔2, 周博1, 刘冉1, 杨之涛3
-
1. 上海交通大学 工业工程与管理系, 上海 200240;
2. 杭州师范大学 阿里巴巴商学院, 浙江 杭州 311121;
3. 上海交通大学医学院附属瑞金医院 急诊科, 上海 200025
- Author(s):
-
ZHANG Yue1, WANG Zixiang2, ZHOU Bo1, LIU Ran1, YANG Zhitao3
-
1. Department of Industrial Engineering and Management, Shanghai Jiao Tong University, Shanghai 200240, China;
2. Alibaba Business School, Hangzhou Normal University, Hangzhou 311121, China;
3. Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
-
- 关键词:
-
线上医疗; 医生排班; 时变排队系统; 数据驱动; 深度学习; 马尔可夫决策过程; 近似动态规划; 启发式算法
- Keywords:
-
telemedicine; physician scheduling; time-varying queueing system; data-driven; deep learning; Markov decision process; approximate dynamic programming; heuristic
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.202404032
- 文献标志码:
-
2025-2-21
- 摘要:
-
线上线下联合的医疗服务模式已经成为我国大型医院普遍采用的新型医疗服务模式,为了优化大型医院在此类模式下的医生资源配置,本文研究考虑切换成本的医生排班问题。针对此问题,建立考虑服务水平限制的医生排班马尔可夫决策过程模型,并设计近似动态规划算法对马尔可夫决策过程高效求解。进一步,考虑患者高度时变到达以及医疗服务时长等多维不确定性,基于合作医院的实际数据,构建数据驱动的循环神经网络模型,提出基于数据驱动的线上线下患者排队系统的性能评估方法。数值实验显示,所提出的方法能够降低医生总工作时长,并有效控制患者等待时间,保证系统的高效运行。本文研究结果可为大型医院合理配置线上线下医疗资源提供理论依据和决策支持。
- Abstract:
-
The online and offline combined medical service mode has become a new medical service mode generally adopted by large hospitals in China. Under this mode, large hospitals need to allocate physicians to online and offline services, and arrange online and offline scheduling plans for physicians while considering the switching of physicians between the two services. To address this problem, a Markov decision process model for physician scheduling with service level constraints was developed and an approximate dynamic programming algorithm was designed to solve the Markov decision process with high efficiency. Furthermore, considering multi-dimensional uncertainties such as highly time-varying patient arrival and service hours, a data-driven recurrent neural network was constructed based on the real-life data of the cooperative hospital as a performance evaluation method for the online and offline queueing systems. Numerical experiments show that the proposed methods can reduce the total working hours of physicians, effectively control the waiting time of patients, and ensure the high-efficiency operation of the system.
备注/Memo
收稿日期:2024-4-24。
基金项目:国家自然科学基金项目(72371161);上海申康医院发展中心管理研究项目(2024SKMR-19);上海交通大学中国医院发展研究院研究项目(CHDI-2024-A-04).
作者简介:张越,硕士研究生,主要研究方向为基于机器学习与人工智能的服务系统优化。E-mail:caesar8310@sjtu.edu.cn。;王子翔,讲师,博士,主要研究方向为服务系统建模优化和基于数据驱动的医疗系统运作管理。E-mail:zixiang_wang@hznu.edu.cn。;刘冉,副教授,博士生导师,主要研究方向为生产与服务系统运作管理,发表学术论文60余篇。E-mail:liuran2009@sjtu.edu.cn。
通讯作者:刘冉. E-mail:liuran2009@sjtu.edu.cn
更新日期/Last Update:
1900-01-01