[1]丁钰,毕晓君.融合样本关系优化和重排序的换衣行人重识别[J].智能系统学报,2025,20(1):101-108.[doi:10.11992/tis.202404005]
 DING Yu,BI Xiaojun.Clothes-changing person re-identification by sample relationship optimization and re-ranking[J].CAAI Transactions on Intelligent Systems,2025,20(1):101-108.[doi:10.11992/tis.202404005]
点击复制

融合样本关系优化和重排序的换衣行人重识别

参考文献/References:
[1] 张鹏, 张晓林, 包永堂, 等. 换装行人重识别研究进展[J]. 中国图象图形学报, 2023, 28(5): 1242-1264.
ZHANG Peng, ZHANG Xiaolin, BAO Yongtang, et al. Cloth-changing person re-identification: a summary[J]. Journal of image and graphics, 2023, 28(5): 1242-1264.
[2] 宋婉茹, 赵晴晴, 陈昌红, 等. 行人重识别研究综述[J]. 智能系统学报, 2017, 12(6): 770-780.
SONG Wanru, ZHAO Qingqing, CHEN Changhong, et al. Survey on pedestrian re-identification research[J]. CAAI transactions on intelligent systems, 2017, 12(6): 770-780.
[3] YE Mang, SHEN Jianbing, LIN Gaojie, et al. Deep learning for person re-identification: a survey and outlook[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(6): 2872-2893.
[4] 钱华明, 王帅帅, 王晨宇. 基于特征融合的行人重识别算法[J]. 应用科技, 2020, 47(2): 29-34,43.
QIAN Huaming, WANG Shuaishuai, WANG Chenyu. Research on the person re-identification algorithm based on feature fusion[J]. Applied science and technology, 2020, 47(2): 29-34,43.
[5] 张智, 毕晓君. 基于风格转换的无监督聚类行人重识别[J]. 智能系统学报, 2021, 16(1): 48-56.
ZHANG Zhi, BI Xiaojun. Clustering approach based on style transfer for unsupervised person re-identification[J]. CAAI transactions on intelligent systems, 2021, 16(1): 48-56.
[6] SUN Yifan, ZHENG Liang, YANG Yi, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C]//Proceedings of the European conference on computer vision. Munich: Springer, 2018: 480-496.
[7] ZHOU Kaiyang, YANG Yongxin, CAVALLARO A, et al. Omni-scale feature learning for person re-identification[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 3701-3711.
[8] QIAN Xuelin, WANG Wenxuan, ZHANG Li, et al. Long-term cloth-changing person re-identification[C]// Proceedings of the Asian Conference on Computer Vision. Kyoto: Springer, 2020: 71–88.
[9] SHI Wei, LIU Hong, LIU Mengyuan. IRANet: identity-relevance aware representation for cloth-changing person re-identification[J]. Image and vision computing, 2022, 117: 104335.
[10] JIN Xin, HE Tianyu, ZHENG Kecheng, et al. Cloth-changing person re-identification from A single image with gait prediction and regularization[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 14258-14267.
[11] ZHANG Peng, XU Jingsong, WU Qiang, et al. Learning spatial-temporal representations over walking tracklet for long-term person re-identification in the wild[J]. IEEE transactions on multimedia, 2021, 23: 3562-3576.
[12] CHEN Jiaxing, JIANG Xinyang, WANG Fudong, et al. Learning 3D shape feature for texture-insensitive person re-identification[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 8142-8151.
[13] GU Xinqian, CHANG Hong, MA Bingpeng, et al. Clothes-changing person re-identification with RGB modality only[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 1050-1059.
[14] YANG Zhengwei, LIN Meng, ZHONG Xian, et al. Good is bad: causality inspired cloth-debiasing for cloth-changing person re-identification[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 1472-1481.
[15] XU Wanlu, LIU Hong, SHI Wei, et al. Adversarial feature disentanglement for long-term person re-identification[C]//International Joint Conference on Artificial Intelligence. Montreal: IJCAI, 2021: 1201-1207.
[16] CUI Zhenyu, ZHOU Jiahuan, PENG Yuxin, et al. DCR-ReID: deep component reconstruction for cloth-changing person re-identification[J]. IEEE transactions on circuits and systems for video technology, 2023, 33(8): 4415-4428.
[17] WANG Zepeng, JIANG Xinghao, XU Ke, et al. A transformer-based cloth-irrelevant patches feature extracting method for Long-term cloth-changing person re-identification[C]//39th Computer Graphics International Conference. Online: Springer, 2022: 278-289.
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 6000–6010.
[19] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. (2020–10–22) [2024–04–08]. http://arxiv.org/abs/2010.11929.
[20] HE Shuting, LUO Hao, WANG Pichao, et al. TransReID: transformer-based object re-identification[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 14993-15002.
[21] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 815-823.
[22] SUN Yifan, CHENG Changmao, ZHANG Yuhan, et al. Circle loss: a unified perspective of pair similarity optimization[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6397-6406.
[23] LENG Qingming, HU Ruimin, LIANG Chao, et al. Person re-identification with content and context re-ranking[J]. Multimedia tools and applications, 2015, 74(17): 6989-7014.
[24] SARFRAZ M S, SCHUMANN A, EBERLE A, et al. A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 420-429.
[25] ZHONG Zhun, ZHENG Liang, CAO Donglin, et al. Re-ranking person re-identification with k-reciprocal encoding[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 3652-3661.
[26] SHEN Xiaohui, LIN Zhe, BRANDT J, et al. Object retrieval and localization with spatially-constrained similarity measure and k-NN re-ranking[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Rhode Island: IEEE, 2012: 3013-3020.
[27] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248-255.
[28] YANG Qize, WU Ancong, ZHENG Weishi. Person re-identification by contour sketch under moderate clothing change[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(6): 2029-2046.
[29] WANG Xiaogang, DORETTO G, SEBASTIAN T, et al. Shape and appearance context modeling[C]//2007 IEEE 11th International Conference on Computer Vision. Rio de Janeiro: IEEE, 2007: 1-8.
[30] ZHENG Liang, SHEN Liyue, TIAN Lu, et al. Scalable person re-identification: a benchmark[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1116-1124.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[9]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[10]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]

备注/Memo

收稿日期:2024-4-8。
基金项目:国家自然科学基金重点项目(62236011);国家社科基金重大项目(20&ZD279).
作者简介:丁钰,硕士,主要研究方向为图像识别、深度学习。E-mail:1849766299@qq.com。;毕晓君,教授,博士生导师,主要研究方向为智能信息处理、数字图像处理、机器学习。主持国家和省部级科研项目10余项,获省部级科学技术一等奖1项、省部级科学技术二等奖6项,发表学术论文205篇。E-mail:bixiaojun@hrbeu.edu.cn。
通讯作者:毕晓君. E-mail:bixiaojun@hrbeu.edu.cn

更新日期/Last Update: 2025-01-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com