[1]孟祥福,谢伟鹏,崔江燕.基于时空动态图的交通流量预测方法研究[J].智能系统学报,2025,20(4):776-786.[doi:10.11992/tis.202402012]
MENG Xiangfu,XIE Weipeng,CUI Jiangyan.Research on traffic flow prediction method based on spatial-temporal dynamic graph convolutional network[J].CAAI Transactions on Intelligent Systems,2025,20(4):776-786.[doi:10.11992/tis.202402012]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第4期
页码:
776-786
栏目:
学术论文—机器学习
出版日期:
2025-08-05
- Title:
-
Research on traffic flow prediction method based on spatial-temporal dynamic graph convolutional network
- 作者:
-
孟祥福, 谢伟鹏, 崔江燕
-
辽宁工程技术大学 电子与信息工程学院, 辽宁 葫芦岛125105
- Author(s):
-
MENG Xiangfu, XIE Weipeng, CUI Jiangyan
-
School of Electronic and Information Engineering, Liaoning Technical University, Huludao 125105, China
-
- 关键词:
-
交通流量; 时空数据; 混合模型; 注意力机制; 时空动态图; 图卷积神经网络; 循环神经网络; 深度学习
- Keywords:
-
traffic flow; spatio-temporal data; hybrid model; attention mechanism; spatio-temporal dynamic graph; graph convolutional neural network; recurrent neural network; deep learning
- 分类号:
-
TP302.7
- DOI:
-
10.11992/tis.202402012
- 文献标志码:
-
2025-2-25
- 摘要:
-
为改进现有交通流量预测方法在建模时空数据和捕捉动态空间相关性方面的不足,提出了一种时空动态图卷积网络(spatio-temporal dynamic graph network,STDGNet)。该模型采用带嵌入层的编码器–解码器架构,通过动态图生成模块从数据驱动的角度挖掘潜在的时空关系,并重构每个时间步的节点动态关联图。嵌入层使用时空自适应嵌入方法建模交通数据的内在时空关系和时间信息;编码器部分利用时空记忆注意力机制,从全局视角对时空特征进行建模;解码器部分将图卷积模块注入循环神经网络中,以同时捕捉时间和空间依赖关系,并输出未来流量情况。实验结果表明,所提模型与最优基线模型解耦动态时空图神经网络(decoupled dynamic spatial-temporal graph neural network,D2STGNN)相比,平均绝对误差降低了1.63%,模型训练时间缩短了近2.5倍。本研究有效提升了交通流量预测的准确性与效率,为智能交通系统的建设提供了有力支撑。
- Abstract:
-
To address the limitations of existing traffic flow prediction methods in modeling spatio-temporal data and capturing dynamic spatial correlations, a spatio-temporal dynamic graph network(STDGNet) is proposed. This model adopts an encoder-decoder architecture with an embedding layer and utilizes a dynamic graph generation module to uncover potential spatio-temporal relationships from a data-driven perspective, reconstructing the dynamic correlation graph of nodes at each time step. The embedding layer employs a spatio-temporal adaptive embedding method to model the intrinsic spatio-temporal relationships and temporal information of traffic data. The encoder part uses a spatio-temporal memory attention mechanism to model spatio-temporal features from a global perspective. The decoder part incorporates a graph convolution module into a recurrent neural network to simultaneously capture temporal and spatial dependencies and output future traffic conditions. Experimental results show that, compared with the optimal baseline model decoupled dynamic spatial-temporal graph neural network(D2STGNN), the proposed model reduces mean absolute error by an average of 1.63% and reduces model training time by nearly 2.5 times. This study effectively improves the accuracy and efficiency of traffic flow prediction, providing strong support for the development of intelligent transportation systems.
更新日期/Last Update:
1900-01-01