[1]殷泽众,郭茂祖,田乐.基于傅里叶频域截断的神经辐射场优化[J].智能系统学报,2024,19(5):1319-1330.[doi:10.11992/tis.202401036]
 YIN Zezhong,GUO Maozu,TIAN Le.Neural radiance field optimization based on Fourier frequency domain truncation[J].CAAI Transactions on Intelligent Systems,2024,19(5):1319-1330.[doi:10.11992/tis.202401036]
点击复制

基于傅里叶频域截断的神经辐射场优化

参考文献/References:
[1] 李静, 杨宜民, 蔡述庭. 多视图的三维景物中平表面重建[J]. 智能系统学报, 2014, 9(4): 454-460.
LI Jing, YANG Yimin, CAI Shuting. 3-D scene plane reconstruction based on multiple views[J]. CAAI transactions on intelligent systems, 2014, 9(4): 454-460.
[2] MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65(1): 99-106.
[3] BARRON J T, MILDENHALL B, TANCIK M, et al. Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 5835-5844.
[4] MüLLER T, EVANS A, SCHIED C, et al. Instant neural graphics primitives with a multiresolution hash encoding[J]. ACM transactions on graphics, 2022, 41(4): 1-15.
[5] 陈国龙. 郑州双槐树遗址景观演化复原与三维建模[D]. 北京: 中国科学院大学(中国科学院空天信息创新研究院), 2022.
CHEN Guolong. Landscape evolution restoration and 3D modeling of Shuanghuaishu site in Zhengzhou[D]. Beijing: Aerospace Information Research Institute, Chinese Academy of Sciences, 2022.
[6] 罗畅. 基于GIS与BIM技术的历史建筑数字孪生管理系统研究[J]. 房地产世界, 2023(21): 82-84.
LUO Chang. Research on digital twin management system of historical buildings based on GIS and BIM technology[J]. Real estate world, 2023(21): 82-84.
[7] YU A, YE V, TANCIK M, et al. PixelNeRF: neural radiance fields from one or few images[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 4576-4585.
[8] CHEN Anpei, XU Zexiang, ZHAO Fuqiang, et al. MVSNeRF: fast generalizable radiance field reconstruction from multi-view stereo[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 14104-14113.
[9] TANCHENKO A. Visual-PSNR measure of image quality[J]. Journal of visual communication and image representation, 2014, 25(5): 874-878.
[10] HORé A, ZIOU D. Image quality metrics: PSNR vs. SSIM[C]//2010 20th International Conference on Pattern Recognition. Istanbul: IEEE, 2010: 2366-2369.
[11] KETTUNEN M, H?RK?NEN E, LEHTINEN J. E-LPIPS: robust perceptual image similarity via random transformation ensembles[EB/OL]. (2019-06-10)[2024-01-29]. https://arxiv.org/abs/1906.03973.
[12] DENG Kangle, LIU A, ZHU Junyan, et al. Depth-supervised NeRF: fewer views and faster training for free[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 12872-12881.
[13] 范腾, 杨浩, 尹稳, 等. 基于神经辐射场的多尺度视图合成研究[J]. 图学学报, 2023, 44(6): 1140-1148.
FAN Teng, YANG Hao, YIN Wen, et al. Multi-scale view synthesis based on neural radiance field[J]. Journal of graphics, 2023, 44(6): 1140-1148.
[14] 付前程. 基于神经隐式学习的多视图三维重建算法研究[D]. 武汉: 华中科技大学, 2023.
FU Qiancheng. Research on multi-view 3D reconstruction algorithm based on neural implicit learning[D]. Wuhan: Huazhong University of Science and Technology, 2023.
[15] NIEMEYER M, BARRON J T, MILDENHALL B, et al. RegNeRF: regularizing neural radiance fields for view synthesis from sparse inputs[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 5470-5480.
[16] ZHANG J, YANG Gengshan, TULSIANI S, et al. NeRS: neural reflectance surfaces for sparse-view 3D reconstruction in the wild[J]. Advances in neural information processing systems., 2021(34): 29835-29847.
[17] ROESSLE B, BARRON J T, MILDENHALL B, et al. Dense depth priors for neural radiance fields from sparse input views[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 12882-12891.
[18] GOODWIN M M, AVENDANO C. Frequency-domain algorithms for audio signal enhancement based on transient modification[J]. AES: journal of the audio engineering society, 2006, 54(9): 827-840.
[19] 王玉文, 胡顺波. 数字图像处理形态学的空域与频域实现[J]. 电脑知识与技术, 2022, 18(18): 74-76.
WANG Yuwen, HU Shunbo. Spatial and frequency domain realization of digital image processing morphology[J]. Computer knowledge and technology, 2022, 18(18): 74-76.
[20] 陈树丽, 张学帅, 张鹏远, 等. 静音掩蔽和频域分段的音频指纹检索算法[J]. 声学学报, 2022, 47(4): 531-540.
CHEN Shuli, ZHANG Xueshuai, ZHANG Pengyuan, et al. Audio fingerprint retrieval method using anti-fingerprint and frequency domain segmentation[J]. Acta acustica, 2022, 47(4): 531-540.
[21] SHEN Weichao, JIA Yunde, WU Yuwei. 3D shape reconstruction from images in the frequency domain[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4466-4474.
[22] ?IRI? D, PERI? Z, NIKOLI? J, et al. Audio signal mapping into spectrogram-based images for deep learning applications[C]//2021 20th International Symposium INFOTEH-JAHORINA. East Sarajevo: IEEE, 2021: 1-6.
[23] SHARAN R V, MOIR T J. Subband time-frequency image texture features for robust audio surveillance[J]. IEEE transactions on information forensics and security, 2015, 10(12): 2605-2615.
[24] ZHANG Ruiqi, SONG Peng, LIU Baohua, et al. Low-frequency swell noise suppression based on U-Net[J]. Applied geophysics, 2020, 17(3): 419-431.
[25] DUCHêNE S, RIANT C, CHAURASIA G, et al. Multiview intrinsic images of outdoors scenes with an application to relighting[J]. ACM transactions on graphics, 2015, 34(5): 1-16.
[26] LIANG Zexiao, TAN Guoliang, SUN Chen, et al. An effective clustering algorithm for the low-quality image of integrated circuits via high-frequency texture components extraction[J]. Electronics, 2022, 11(4): 572.
[27] SONG Liangchen, LI Zhong, GONG Xuan, et al. Harnessing low-frequency neural fields for few-shot view synthesis[EB/OL]. (2023-03-15)[2024-01-29]. https://arxiv.org/abs/2303.08370.
[28] TANCIK M, SRINIVASAN P P, MILDENHALL B, et al. Fourier features let networks learn high frequency functions in low dimensional domains[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: ACM, 2020, 33: 7537-7547.
[29] SHENG Zehua, LIU Xiongwei, CAO Siyuan, et al. Frequency-domain deep guided image denoising[J]. IEEE transactions on multimedia, 2022, 25: 6767-6781.
[30] PREWITT J M S. Object enhancement and extraction[J]. Picture processing and psychopictorics, 1970, 10(1): 15-19.
[31] WANG Guangcong, CHEN Zhaoxi, LOY C C, et al. SparseNeRF: distilling depth ranking for few-shot novel view synthesis[C]//2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 9031-9042.

备注/Memo

收稿日期:2024-1-29。
基金项目:国家自然科学基金面上项目(62271036);北京市自然科学基金面上项目(4232021).
作者简介:殷泽众,硕士研究生,主要研究方向为计算机视觉、智慧城市。E-mail:13717744389@163.com;郭茂祖,教授,博士生导师,博士,中国计算机学会杰出会员。主要研究方向为机器学习与人工智能、智能建造与智慧城市、生物信息学。发表学术论文 200余篇。E-mail:guomaozu@bucea.edu.cn;田乐,副教授,博士,主要研究方向为计算机网络、无线通信、大数据处理。获得2022年中国发明协会一等奖,授权发明专利3项,软件著作权2项,出版专著1部。E-mail:tianle@bucea.edu.cn。
通讯作者:郭茂祖. E-mail:guomaozu@bucea.edu.cn

更新日期/Last Update: 2024-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com