[1]方浩添,田乐,郭茂祖.基于多群体混合智能优化算法的卸载决策寻优方法[J].智能系统学报,2024,19(6):1573-1583.[doi:10.11992/tis.202312042]
FANG Haotian,TIAN Le,GUO Maozu.Unloading decision optimization method based on multi-population hybrid intelligent optimization algorithm[J].CAAI Transactions on Intelligent Systems,2024,19(6):1573-1583.[doi:10.11992/tis.202312042]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第6期
页码:
1573-1583
栏目:
人工智能院长论坛
出版日期:
2024-12-05
- Title:
-
Unloading decision optimization method based on multi-population hybrid intelligent optimization algorithm
- 作者:
-
方浩添, 田乐, 郭茂祖
-
北京建筑大学 建筑大数据智能处理方法研究北京市重点实验室, 北京 102600
- Author(s):
-
FANG Haotian, TIAN Le, GUO Maozu
-
Beijing Key Laboratory of Intelligent Processing of Building Big Data, Beijing University of Civil Engineering and Architecture, Beijing 102600, China
-
- 关键词:
-
移动边缘计算; 计算卸载; 人工鱼群算法; 人工蜂群算法; 自相似排队模型; 高斯衰减函数; 粒子群算法; 惯性权重因子
- Keywords:
-
moving edge computing; calculating offloading; artificial fish swarm algorithm; artificial colony algorithm; self-similar queuing model; gaussian attenuation function; particle swarm optimization; inertia weight factor
- 分类号:
-
TP393
- DOI:
-
10.11992/tis.202312042
- 摘要:
-
在移动边缘计算的网络架构中,为权衡降低计算应用卸载的能耗与时延,引入卸载决策控制器,并通过卸载决策寻优算法得到最优卸载决策。结合人工蜂群算法和人工鱼群算法提出新的人工蜂-鱼群(artificial bee colony-fish swarm, ABC-FS)算法,在此基础上引入高斯衰减函数将算法参数由静态变为动态,并将改进粒子群算法的惯性权重因子引入算法中,从而得到一种多群体混合智能优化算法;设计联合优化时延与能耗的目标函数,再依据泊松概率进行仿真实验。仿真实验结果表明,提出的卸载策略寻优算法,与多组对照组相比,收敛速度更快,且在多接入边缘计算的场景下能权衡降低系统中任务卸载的总时延与总能耗。
- Abstract:
-
In the network architecture of mobile edge computing, an offloading decision controller was introduced to balance the reduction of energy consumption and delay. This controller obtains the optimal offloading decision through an offloading decision optimization algorithm. A new ABC–FS algorithm was proposed by combining the artificial bee colony (ABC) algorithm and the artificial fish swarm (FS) algorithm. Additionally, a Gaussian decay function was introduced to transition the algorithm parameters from static to dynamic, and the inertia weight factor of the improved particle swarm optimization algorithm was incorporated, creating a multi-population hybrid intelligent optimization algorithm. Finally, an objective function that jointly optimizes delay and energy consumption was designed, and simulation experiments were conducted using Poisson probability. Simulation results show that the proposed offloading strategy optimization algorithm achieves faster convergence speed compared to several benchmark methods and effectively balances the reduction of total task offloading delay and total energy consumption in multi-access edge computing scenarios.
备注/Memo
收稿日期:2023-12-27。
基金项目:国家自然科学基金项目(62271036);国家重点研发计划科技冬奥重点专项(2021YFF0306303).
作者简介:方浩添,硕士研究生,主要研究方向为移动边缘计算。E-mail:2108110021005@stu.bucea.edu.cn;田乐,副教授,博士,主要研究方向为计算机网络、无线通信、大数据处理。E-mail:tianle@bucea.edu.cn;郭茂祖,教授,博士生导师,主要研究方向为机器学习、数据挖掘理论与算法、智能建造与智慧城市等人工智能应用、生物信息学。获得省杰出青年科学基金项目(2006年),教育部宝钢优秀教师奖(2015年)等荣誉称号,教育部自然科学奖(2019年)、第十届吴文俊人工智能自然科学奖(2020年)以及其他省部级科技奖4项(2002、2008年)、省部级教学成果奖1项(2018年)。主持、参与过3项自然科学基金委重点项目等,发表学术论文290余篇,授权专利、软件著作权20余项。E-mail:guomaozu@bucea.edu.cn。
通讯作者:郭茂祖. E-mail:guomaozu@bucea.edu.cn
更新日期/Last Update:
2024-11-05