[1]李庆华,冉泳屹,刘启晨,等.数据中心冷热电联产系统的前摄式智能节能优化算法[J].智能系统学报,2025,20(1):139-149.[doi:10.11992/tis.202312037]
LI Qinghua,RAN Yongyi,LIU Qichen,et al.Proactive intelligent energy-saving optimization algorithm for data center CCHP system[J].CAAI Transactions on Intelligent Systems,2025,20(1):139-149.[doi:10.11992/tis.202312037]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第1期
页码:
139-149
栏目:
学术论文—智能系统
出版日期:
2025-01-05
- Title:
-
Proactive intelligent energy-saving optimization algorithm for data center CCHP system
- 作者:
-
李庆华1, 冉泳屹1, 刘启晨2, 孙彤瑶1, 陈双武3, 雒江涛1
-
1. 重庆邮电大学 通信与信息工程学院, 重庆 400065;
2. 纽卡斯尔大学 建筑、规划与景观学院, 英格兰 纽卡斯尔 NE1 7RU;
3. 中国科学技术大学 信息科学技术学院, 安徽 合肥 230027
- Author(s):
-
LI Qinghua1, RAN Yongyi1, LIU Qichen2, SUN Tongyao1, CHEN Shuangwu3, LUO Jiangtao1
-
1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2. School of Architecture, Planning and Landscape, Newcastle University, Newcastle NE1 7RU, England;
3. School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
-
- 关键词:
-
绿色数据中心; 冷热电联产; 智能节能; 深度强化学习; 碳排放优化; 能效提升; 联合控制; 预测网络
- Keywords:
-
green data center; combined cooling; heating and power generation; intelligent energy-saving; deep reinforcement learning; carbon emission optimization; energy efficiency improvement; joint control; predictive network
- 分类号:
-
TP272
- DOI:
-
10.11992/tis.202312037
- 摘要:
-
现有的数据中心节能降碳优化方法没有综合考虑碳足迹涉及的能源输入、生产耗能以及废余利用等环节的耦合性,难以实现系统性节能降碳。为此,提出了一种基于深度强化学习的优化算法DeepCCHP(deep combined cooling, heating and power generation),针对数据中心冷热电联产系统,联合控制供电子系统和制冷子系统,优化用电成本、碳排放量和能效。DeepCCHP结合长、短期时间序列网络和深度强化学习方法对联合优化问题进行求解,实现前摄式的联合控制发电设备和制冷设备。在基于Trnsys软件的仿真环境中,通过阿里巴巴数据中心集群数据的训练和验证。实验结果表明,与基准算法相比,DeepCCHP算法可以节省最高40%的成本和28%的碳排放量,且能够在能源成本、碳排放和能效三者之间取得更好的折中与平衡。
- Abstract:
-
The existing methods for energy-saving and carbon reduction optimization in data centers lack a comprehensive consideration of the coupling of carbon footprint-related factors, including energy input, production consumption, and waste utilization. This limitation hinders the achievement of systematic energy-saving and carbon reduction. To address this issue, a deep reinforcement learning-based optimization algorithm, named DeepCCHP, is proposed. This algorithm focuses on the combined cooling, heating and power generation (CCHP) in data centers, employing coordinated control of the power supply and cooling systems to optimize electricity cost, carbon emissions, and PUE. DeepCCHP integrates a long and short-term time-series network-attention (LSTNet-Attn) for multi-dimensional time series forecasting and a deep reinforcement learning approach to solve the joint optimization problem, achieving proactive joint control of power generation and cooling equipment. The algorithm is validated through training and verification using Alibaba data center cluster data in a simulation environment based on Trnsys software. Experimental results demonstrate that, compared with baseline algorithms, the DeepCCHP algorithm can achieve up to 40% cost savings and 28% reduction in carbon emissions. It also demonstrates a better trade-off and balance among energy cost, carbon emissions, and energy efficiency.
备注/Memo
收稿日期:2023-12-24。
基金项目:国家自然科学基金项目(U23A20275, 62101525, 62171072);重庆市自然科学基金项目(cstc2021jcyj-msxmX0586).
作者简介:李庆华,硕士,主要研究方向为绿色数据中心、智能节能、深度强化学习。E-mail:s210131103@stu.cqupt.edu.cn。;冉泳屹,文峰副教授,博士,文峰青年百人,IEEE会员,主要研究方向为计算机及网络系统的智能控制与优化。主持国家自然科学基金区域联合基金重点项目课题、国家自然科学基金青年基金项目、重庆市自然科学基金面上项目、重庆市留创计划等科研项目4项,入选2021年重庆市留学人员回国创业创新支持计划。发表学术论文40余篇,发表英文专著章节1章,译著1部,获得3次国际会议最佳论文奖。E-mail:ranyy@cqupt.edu.cn。;刘启晨,硕士,主要研究方向为进阶建筑设计、建筑与景观。E-mail:1243163016@qq.com。
通讯作者:冉泳屹. E-mail:ranyy@cqupt.edu.cn
更新日期/Last Update:
2025-01-05