[1]李庆华,冉泳屹,刘启晨,等.数据中心冷热电联产系统的前摄式智能节能优化算法[J].智能系统学报,2025,20(1):139-149.[doi:10.11992/tis.202312037]
 LI Qinghua,RAN Yongyi,LIU Qichen,et al.Proactive intelligent energy-saving optimization algorithm for data center CCHP system[J].CAAI Transactions on Intelligent Systems,2025,20(1):139-149.[doi:10.11992/tis.202312037]
点击复制

数据中心冷热电联产系统的前摄式智能节能优化算法

参考文献/References:
[1] 李德毅. AI: 人类社会发展的加速器[J]. 智能系统学报, 2017, 12(5): 583-589.
LI Deyi. Artificial intelligence: an accelerator for the development of human society[J]. CAAI transactions on intelligent systems, 2017, 12(5): 583-589.
[2] 中国信息通信研究院: 数据中心白皮书(2022)[EB/OL]. (2022-04-22)[2023-12-24]. http://www.caict.ac.cn/kxyj/qwfb/bps/202204/t20220422_400391.html.
China Academy of Information and Communications Technology: data center white paper(2022)[EB/OL]. (2022-04-22)[2023-12-24]. http://www.caict.ac.cn/kxyj/qwfb/bps/202204/t20220422_400391.htm.
[3] 工业和信息化部电子第五研究所计量检测中心. 中国数字基建的脱碳之路: 数据中心与5G减碳潜力与挑战(2020—2035)[R]. 广州: 工业和信息化部电子第五研究所计量检测中心, 2021.
Metrology and Testing Center of the Fifth Research Institute of Electronics of the Ministry of Industry and Information Technology. China’s digital infrastructure decarbonization path: data centers and 5G carbon reduction potentials and challenges(2020—2035)[R]. Guangzhou: Metrology and Testing Center of the Fifth Research Institute of Electronics of the Ministry of Industry and Information Technology, 2021.
[4] 娄洁良. 数据中心能效案例及节能运行[J]. 电信科学, 2019, 35(2): 95-104.
LOU Jieliang. Data center energy efficiency case and energy saving operation[J]. Telecommunications science, 2019, 35(2): 95-104.
[5] 张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46(8): 189-207.
ZHANG Shenxi, WANG Danyang, CHENG Haozhong, et al. Key technologies and challenges of low-carbon integrated energy system planning for carbon emission peak and carbon neutrality[J]. Automation of electric power systems, 2022, 46(8): 189-207.
[6] 陈信甫, 梁珍. 风冷数据中心热回风预热市政冷水的节能与可行性分析[J]. 制冷与空调, 2023, 23(11): 80-88.
CHEN Xinfu, LIANG Zhen. Energy saving and feasibility analysis of municipal cold water preheating by hot return air in air-cooled data center[J]. Refrigeration and air-conditioning, 2023, 23(11): 80-88.
[7] 郑瑛. 云计算数据中心节能调度算法改进研究[J]. 西南大学学报(自然科学版), 2019, 41(12): 135-142.
ZHENG Ying. Improvement of energy-saving scheduling algorithm in cloud computing data centers[J]. Journal of Southwest University (natural science edition), 2019, 41(12): 135-142.
[8] 卜昆. “碳中和” 驱动下能源大数据中心建设的问题与对策[J]. 信息系统工程, 2023(12): 56-59.
BU Kun. Problems and countermeasures of energy big data center construction driven by “carbon neutralization”[J]. China CIO news, 2023(12): 56-59.
[9] WAN Jianxiong, ZHOU Jie, GUI Xiang. Sustainability analysis of green data centers with CCHP and waste heat reuse systems[J]. IEEE transactions on sustainable computing, 2021, 6(1): 155-167.
[10] WANG Ruihang, CAO Zhiwei, ZHOU Xin, et al. Green data center cooling control via physics-guided safe reinforcement learning[J]. ACM transactions on cyber-physical systems, 2024, 8(2): 1-26.
[11] HE Wei, ZHANG Jifang, LI Hailong, et al. Optimal thermal management of server cooling system based cooling tower under different ambient temperatures[J]. Applied thermal engineering, 2022, 207: 118176.
[12] YADAV R, ZHANG Weizhe, LI Keqin, et al. Managing overloaded hosts for energy-efficiency in cloud data centers[J]. Cluster computing, 2021, 24(3): 2001-2015.
[13] ZHOU Zhou, SHOJAFAR M, ALAZAB M, et al. AFED-EF: an energy-efficient VM allocation algorithm for IoT applications in a cloud data center[J]. IEEE transactions on green communications and networking, 2021, 5(2): 658-669.
[14] VENKATASWAMY V, GRIGSBY J, GRIMSHAW A, et al. Rare: renewable energy aware resource management in Datacenters[M]//Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2023: 108-130.
[15] NGOBENI A, DANIEL CHOWDHURY S P. Electrical design for a combined cooling, heating and power for go-green data centers[C]//2018 IEEE PES/IAS Power Africa. Cape Town: IEEE, 2018: 901-906.
[16] LYU Jiawei, ZHANG Shenxi, CHENG Haozhong, et al. Optimal sizing of energy station in the multienergy system integrated with data center[J]. IEEE transactions on industry applications, 2021, 57(2): 1222-1234.
[17] ZHANG Tingjun, YUE Dong, YU Liang, et al. Joint energy and workload scheduling for fog-assisted multimicrogrid systems: a deep reinforcement learning approach[J]. IEEE systems journal, 2023, 17(1): 164-175.
[18] PRAVEENCHANDAR J, TAMILARASI A. RETRACTED ARTICLE: dynamic resource allocation with optimized task scheduling and improved power management in cloud computing[J]. Journal of ambient intelligence and humanized computing, 2021, 12(3): 4147-4159.
[19] RAN Yongyi, HU Han, WEN Yonggang, et al. Optimizing energy efficiency for data center via parameterized deep reinforcement learning[J]. IEEE transactions on services computing, 2023, 16(2): 1310-1323.
[20] CHI Ce, JI Kaixuan, SONG Penglei, et al. Cooperatively improving data center energy efficiency based on multi-agent deep reinforcement learning[J]. Energies, 2021, 14(8): 2071.
[21] RAN Yongyi, ZHOU Xin, HU Han, et al. Optimizing data center energy efficiency via event-driven deep reinforcement learning[J]. IEEE transactions on services computing, 2023, 16(2): 1296-1309.
[22] LI Longxi, YU Shiwei, MU Hailin, et al. Optimization and evaluation of CCHP systems considering incentive policies under different operation strategies[J]. Energy, 2018, 162: 825-840.
[23] GUPTA R, PURI I K. Waste heat recovery in a data center with an adsorption chiller: technical and economic analysis[J]. Energy conversion and management, 2021, 245: 114576.
[24] ZHANG Qingxia, MENG Zihao, HONG Xianwen, et al. A survey on data center cooling systems: technology, power consumption modeling and control strategy optimization[J]. Journal of systems architecture, 2021, 119: 102253.
[25] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[EB/OL]. (2015-09-09)[2023-12-24]. https://arxiv.org/abs/1509.02971v6.
[26] LAI Guokun, CHANG Weicheng, YANG Yiming, et al. Modeling long- and short-term temporal patterns with deep neural networks[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. Ann Arbor: ACM, 2018: 95-104.
[27] 申翔翔, 侯新文, 尹传环. 深度强化学习中状态注意力机制的研究[J]. 智能系统学报, 2020, 15(2): 317-322.
SHEN Xiangxiang, HOU Xinwen, YIN Chuanhuan. State attention in deep reinforcement learning[J]. CAAI transactions on intelligent systems, 2020, 15(2): 317-322.
[28] WANG Dongxiao, XIE Changhong, WU Runji, et al. Optimal energy scheduling for data center with energy nets including CCHP and demand response[J]. IEEE access, 2021, 9: 6137-6151.
[29] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.
[30] XIANG Shilin, XIANG Yue, LU Yu, et al. Modeling and optimization of data center energy consumption[C]//2023 Panda Forum on Power and Energy. Chengdu: IEEE, 2023: 544-549.

备注/Memo

收稿日期:2023-12-24。
基金项目:国家自然科学基金项目(U23A20275, 62101525, 62171072);重庆市自然科学基金项目(cstc2021jcyj-msxmX0586).
作者简介:李庆华,硕士,主要研究方向为绿色数据中心、智能节能、深度强化学习。E-mail:s210131103@stu.cqupt.edu.cn。;冉泳屹,文峰副教授,博士,文峰青年百人,IEEE会员,主要研究方向为计算机及网络系统的智能控制与优化。主持国家自然科学基金区域联合基金重点项目课题、国家自然科学基金青年基金项目、重庆市自然科学基金面上项目、重庆市留创计划等科研项目4项,入选2021年重庆市留学人员回国创业创新支持计划。发表学术论文40余篇,发表英文专著章节1章,译著1部,获得3次国际会议最佳论文奖。E-mail:ranyy@cqupt.edu.cn。;刘启晨,硕士,主要研究方向为进阶建筑设计、建筑与景观。E-mail:1243163016@qq.com。
通讯作者:冉泳屹. E-mail:ranyy@cqupt.edu.cn

更新日期/Last Update: 2025-01-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com