[1]张建宇,谢娟英.ObjectBoxG:基于GC3模块的目标检测算法[J].智能系统学报,2024,19(6):1385-1394.[doi:10.11992/tis.202310025]
ZHANG Jianyu,XIE Juanying.ObjectBoxG: object detection algorithm based on GC3 module[J].CAAI Transactions on Intelligent Systems,2024,19(6):1385-1394.[doi:10.11992/tis.202310025]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第6期
页码:
1385-1394
栏目:
学术论文—机器学习
出版日期:
2024-12-05
- Title:
-
ObjectBoxG: object detection algorithm based on GC3 module
- 作者:
-
张建宇, 谢娟英
-
陕西师范大学 计算机科学学院, 陕西 西安, 710119
- Author(s):
-
ZHANG Jianyu, XIE Juanying
-
School of Computer Science, Shaanxi Normal University, Xi’an 710119, China
-
- 关键词:
-
图卷积神经网络; 特征提取; 特征融合; 目标检测; 深度学习; 无锚框方法; 特征金字塔网络; Object-Box检测器; 多尺度特征; 全局特征
- Keywords:
-
graph convolutional neural network; feature extraction; feature fusion; object detection; deep learning; anchor-freem ethods; feature pyram id network; Object-Box detector; multi-scale features; global features
- 分类号:
-
TP181
- DOI:
-
10.11992/tis.202310025
- 摘要:
-
随着对目标检测任务研究的不断深入,以ObjectBox检测器为代表的无锚框方法引起了研究者们的关注。然而,ObjectBox检测器不能充分利用多尺度特征,也未充分考虑目标中心点与全局信息关联。为此,借助图卷积神经网络的节点相互影响原理,提出基于图谱方法的图卷积层模块GConv (graph convolution layer),学习图像全局特征;融合模块GConv与C3 (cross stage partial network with 3 convolutions) 得到GC3 (graph C3 module)模块,进一步提取图像原始特征、细节特征以及全局特征;将GC3结合广义特征金字塔网络GFPN (generalized feature pyramid network),提出图广义特征金字塔网络GGFPN (graph generalized feature pyramid network),并嵌入ObjectBox算法,设计出ObjectBoxG算法。经典数据集的实验测试表明,提出的GC3模块比原C3模块具有更强特征提取能力;提出的GGFPN网络比GC3的特征学习能力更强;提出的ObjectBoxG算法具有优良的目标检测性能。
- Abstract:
-
With the deepening development of the study on object detection tasks, anchor-free methods such as the ObjectBox detector have attracted the attention of researchers. However, the ObjectBox detector has its limitations: it does not fully utilize multiscale features or adequately consider the correlation between target center points and global information. A graph convolution layer module (GConv), which is based on the graph spectrum method, is proposed to learn global image features and address the aforementioned limitations. Additionally, a new module named GC3 combines the proposed GConv module with C3 (cross-stage partial network with 3 conversions) to further extract the original, fine, and global image features. GC3 is combined with the generalized feature pyramid network (GGFPN) to form the GGFPN. The GGFPN is then embedded into the ObjectBox detector, resulting in the ObjectBoxG algorithm. Experiments on benchmark datasets demonstrate that the proposed GC3 module has stronger feature extraction capability than the original C3 module, and the proposed GGFPN network offers superior feature learning capability to GC3. The ObjectBoxG algorithm demonstrates excellent performance in object detection.
更新日期/Last Update:
2024-11-05