[1]吴瑞林,葛泉波,刘华平.基于YOLOX的类增量印刷电路板缺陷检测方法[J].智能系统学报,2024,19(4):1061-1070.[doi:10.11992/tis.202309044]
 WU Ruilin,GE Quanbo,LIU Huaping.Class-incremental printed circuit board defect detection method based on YOLOX[J].CAAI Transactions on Intelligent Systems,2024,19(4):1061-1070.[doi:10.11992/tis.202309044]
点击复制

基于YOLOX的类增量印刷电路板缺陷检测方法

参考文献/References:
[1] CHEN Yajun, DING Yuanyuan, ZHAO Fan, et al. Surface defect detection methods for industrial products: a review[J]. Applied sciences, 2021, 11(16): 7657.
[2] 钱万明, 朱红萍, 朱泓知, 等. 基于自适应加权特征融合的PCB裸板缺陷检测研究[J]. 电子测量与仪器学报, 2022, 36(10): 92–99
QIAN Wanming, ZHU Hongping, ZHU Hongzhi, et al. Research on defect detection of PCB bare board based on adaptive weighted feature fusion[J]. Journal of electronic measurement and instrumentation, 2022, 36(10): 92–99
[3] 季堂煜, 赵倩, 余文涛, 等. 基于增强小目标特征提取的PCB板缺陷检测模型[J]. 仪表技术与传感器, 2023(4): 87–92
JI Tangyu, ZHAO Qian, YU Wentao, et al. PCB board defect detection model based on enhanced small-target feature extraction[J]. Instrumentation technology and sensors, 2023(4): 87–92
[4] TANG Junlong, LIU Shenbo, ZHAO Dongxue, et al. PCB-YOLO: an improved detection algorithm of PCB surface defects based on YOLOv5[J]. Sustainability, 2023, 15(7): 5963.
[5] CHEN Wei, HUANG Zhongtian, MU Qian, et al. PCB defect detection method based on transformer-yolo[J]. IEEE access, 2022, 10: 129480–129489.
[6] QIN Ling, ISA N A M. Printed circuit board defect detection methods based on image processing, machine learning and deep learning: a survey[J]. IEEE access, 2023, 11: 15921–15944.
[7] LI Zhizhong, HOIEM D. Learning without forgetting[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(12): 2935–2947.
[8] HINTON G, VINYAL O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. (2015-03-09) [2023-09-27]. https://arxiv.org/abs/1503.02531.
[9] REBUFFI S A, KOLESNIKOV A, SPERL G, et al. Icarl: incremental classifier and representation learning[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2001-2010.
[10] DOUILLARD A, CORD M, OLLION C, et al. Podnet: pooled outputs distillation for small-tasks incremental learning[C]//European Conference on Computer Vision. Glasgow: Springer International Publishing, 2020: 86-102.
[11] SHMELKOV K, SCHMID C, ALAHARI K. Incremental learning of object detectors without catastrophic forgetting[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 3400-3409.
[12] ZHOU Wang, CHANG Shiyu, SOSA N, et al. Lifelong object detection[EB/OL]. (2020-09-02) [2023-09-27]. https://arxiv.org/abs/2009.01129.
[13] GE Zheng, LIU Songtao, WANG Feng, et al. Yolox: exceeding yolo series in 2021[EB/OL]. (2021-07-06) [2023-09-27]. https://arxiv.org/abs/2107.08430.
[14] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440-1448.
[15] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 39(6): 1137–1149.
[16] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. Fcos: fully convolutional one-stage object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Seoul: IEEE, 2019: 9627-9636.
[17] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229.
[18] KOTHALA L P, JONNALA P, GUNTUR S R. Localization of mixed intracranial hemorrhages by using a ghost convolution-based YOLO network[J]. Biomedical signal processing and control, 2023, 80: 104378.
[19] 韩璐,毕晓君. 基于增强特征融合YOLOV5的视网膜病变检测[J]. 应用科技, 2022, 49(1): 66–72
HAN Lu, BI Xiaojun. Detection of retinopathy based on enhanced feature fusion YOLOV5[J]. Applied science and technology, 2022, 49(1): 66–72
[20] BAO Wenxia, DU Xiang, WANG Nian, et al. A defect detection method based on BC-YOLO for transmission line components in UAV remote sensing images[J]. Remote sensing, 2022, 14(20): 5176.
[21] 李朝辉,安金堂,贾红雨,等. 结合旋转框和注意力机制的轻量遥感图像检测模型[J]. 中国图象图形学报, 2023, 28(9): 2706–2718
LI Zhaohui, AN Jintang, JIA Hongyu, et al. Lightweight object detection model in remote sensing image by combining rotation box and attention mechanism[J]. Journal of image and graphics, 2023, 28(9): 2706–2718
[22] 孙智文,秦志亮,彭若松,等. 基于改进YOLOv4深度学习的有雾海面船只识别[J]. 应用科技, 2023, 50(5): 37–45
SUN Zhiwen, QIN Zhiliang, PENG Ruosong, et al. Ship identification of foggy sea surface based on improved YOLOv4 deep learning algorithm[J]. Applied science and technology, 2023, 50(5): 37–45
[23] 吴睿,毕晓君. 基于改进YOLOv5算法的珊瑚礁底栖生物识别方法[J]. 哈尔滨工程大学学报, 2022, 43(4): 580–586
WU Rui, BI Xiaojun. A coral reef benthic recognition method based on the improved YOLOv5 algorithm[J]. Journal of Harbin Engineering University, 2022, 43(4): 580–586
[24] 余越,柏兴,狄岚. 基于YOLO网络和小波降噪的视频车辆跟踪测速优化[J]. 应用科技, 2023, 50(1): 14–20
YU Yue, BAI Xing, DI Lan. Video vehicle tracking and speed measurement optimization based on YOLO network and wavelet noise reduction[J]. Applied science and technology, 2023, 50(1): 14–20
[25] 卞佰成, 陈田, 吴入军, 等. 基于改进YOLOv3的印刷电路板缺陷检测算法[J]. 浙江大学学报(工学版), 2023, 27(4): 735–743
BIAN Baicheng, CHEN Tian, WU Rujun, et al. PCB defect detection algorithm based on improved YOLOv3[J]. Journal of Zhejiang University (engineering science edition), 2023, 27(4): 735–743
[26] ZHENG Liaomo, WANG Xiaojie, WANG Qi, et al. A fabric defect detection method based on improved yolov5[C]//2021 7th International Conference on Computer and Communications. Chengdu: IEEE, 2021: 620-624.
[27] 张秋雁,朱傥,肖书舟,等. 基于改进YOLOv4算法的高压输电线路异物检测[J]. 应用科技, 2023, 50(4): 59–65
ZHANG Qiuyan, ZHU Tang, XIAO Shuzhou, et al. Foreign object detection of high voltage transmission line based on improved YOLOv4 algorithm[J]. Applied science and technology, 2023, 50(4): 59–65
[28] ZHANG Meng, YIN Liju. Solar cell surface defect detection based on improved YOLOv5[J]. IEEE access, 2022, 10: 80804–80815.
[29] 公徐路, 张淑娟. 基于改进YOLOv5s的苹果叶片小目标病害轻量化检测方法[J]. 农业工程学报, 2023, 29(19): 175–184
GONG Xulu, ZHANG Shujuan. Lightweight detection method of small target disease in apple leaves based on improved YOLOv5s[J]. Transactions of the chinese society of agricultural engineering, 2023, 29(19): 175–184
[30] LI Dawei, TASCI S, GHOSH S, et al. RILOD: near real-time incremental learning for object detection at the edge[C]//Proceedings of the 4th ACM/IEEE Symposium on Edge Computing. Washington: ACM, 2019: 113-126.
[31] RUSU A A, RABINOWIT N C, DESJARDIN G, et al. Progressive neural networks[EB/OL]. (2016-06-15) [2023-09-27]. https://arxiv.org/abs/1606.04671.
[32] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[9]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[10]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]

备注/Memo

收稿日期:2023-09-27。
基金项目:江苏高校“青蓝工程”项目(R2023Q07).
作者简介:吴瑞林,硕士研究生,主要研究方向为计算机视觉和缺陷检测。E-mail:ruilin_wu0516@126.com;葛泉波,教授,博士生导师,主要研究方向为多源信息融合、自主无人系统和协同目标识别。中国自动化学会青年工作委员会副主任委员、智能自动化专业委员。主持国家自然科学基金项目(共4项,其中1项重点),发表学术论文100余篇。E-mail:geqb@ nuist.edu.cn;刘华平,教授,博士生导师,主要研究方向为机器人感知、学习与控制、多模态信息融合。吴文俊人工智能科学技术奖获得者、中国人工智能学会理事。主持国家杰出青年科学基金1项、国家自然科学基金1项。发表学术论文100余篇。E-mail:hpliu@ tsinghua.edu.cn
通讯作者:刘华平. E-mail:hpliu@tsinghua.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com