[1]王立鹏,王小晨,齐尧,等.基于特征融合及动态背景去除的室内机器人语义VI-SLAM[J].智能系统学报,2024,19(6):1438-1448.[doi:10.11992/tis.202309025]
WANG Lipeng,WANG Xiaochen,QI Yao,et al.Indoor robot semantic VI-SLAM based on feature fusion and dynamic background removal[J].CAAI Transactions on Intelligent Systems,2024,19(6):1438-1448.[doi:10.11992/tis.202309025]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第6期
页码:
1438-1448
栏目:
学术论文—机器人
出版日期:
2024-12-05
- Title:
-
Indoor robot semantic VI-SLAM based on feature fusion and dynamic background removal
- 作者:
-
王立鹏, 王小晨, 齐尧, 张佳鹏
-
哈尔滨工程大学 智能科学与工程学院, 黑龙江 哈尔滨 150001
- Author(s):
-
WANG Lipeng, WANG Xiaochen, QI Yao, ZHANG Jiapeng
-
College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
-
- 关键词:
-
室内机器人; VI-SLAM; 特征动态去除; 语义地图; 特征融合; 稠密点云; 点云分割; 动态场景
- Keywords:
-
indoor robot; VI-SLAM; feature dynamic removing; semantic map; feature fusion.; dense point cloud; point cloud segmentation; dynamic scene
- 分类号:
-
TP242.6
- DOI:
-
10.11992/tis.202309025
- 摘要:
-
为提升室内机器人在动态场景中的定位精度,同时构建细节丰富的三维语义地图,提出一种基于特征融合及动态背景去除的室内机器人语义VI-SLAM (visual-inertial simultaneous localization and mapping)算法。首先,改进ORB-SLAM3算法框架,设计一种可以实时构建三维稠密点云地图的VI-SLAM算法;其次,将目标识别算法YOLOv5与VI-SLAM算法融合,获取二维语义信息,结合二维语义信息与极线约束原理去除动态特征;再次,将二维语义信息映射为三维语义标签,将语义特征与点云特征相融合,构建三维语义地图;最后,基于公开数据集及移动机器人平台,在动态场景下开展三维语义地图构建实验。实验结果验证了提出的该语义VI-SLAM算法在动态环境下定位与建图的可行性和有效性。
- Abstract:
-
An indoor robot semantic VI-SLAM algorithm based on feature fusion and dynamic background removal is proposed to improve the positioning accuracy of indoor robots in dynamic scenes and build a three-dimensional (3D) semantic map with rich details. The framework of the ORB-SLAM3 algorithm is improved, and a VI-SLAM algorithm for real-time construction of 3D dense point cloud maps is designed. The algorithm fuses target recognition algorithms YOLOv5 and VI-SLAM to obtain two-dimensional (2D) semantic information. Dynamic features are then removed by combining the 2D semantic information with the epipolar constraint principle. Subsequently, the 2D semantic information is mapped into a 3D semantic tag, constructing a 3D semantic map by fusing the semantic features with the point-cloud features. Finally, experiments in 3D semantic map construction were conducted in indoor scenes using public data sets and a mobile robot platform. Results verify the feasibility and effectiveness of the semantic VI-SLAM algorithm in dynamic environments.
备注/Memo
收稿日期:2023-9-13。
基金项目:黑龙江省教育科学规划2023年度重点课题(GJB1423059);国家自然科学基金项目(62173103);黑龙江省自然科学基金项目(LH2024F037);中央高校基本科研业务费专项(3072024XX0403).
作者简介:王立鹏,副教授,博士生导师,主要研究方向为语义SLAM、非线性控制、复杂系统建模。主持国家自然科学基金面上项目、青年项目、黑龙江省自然科学基金、民品横向项目8项。获授权发明专利9项。获省部级科技进步特等奖、一等奖。发表学术论文30余 篇。E-mail:wanglipeng@hrbeu.edu.cn;王小晨,硕士研究生,主要研究方向为多机器人协同、视觉SLAM。E-mail:13593593764@163.com;齐尧,硕士研究生,主要研究方向为深度学习、视觉惯性SLAM。E-mail:qiyao0208@163.com。
通讯作者:王立鹏. E-mail:wanglipeng@hrbeu.edu.cn
更新日期/Last Update:
2024-11-05