[1]金怡凡,王海涛,贾伟.使用掌纹线对基于深度学习的掌纹识别进行数据增强[J].智能系统学报,2024,19(5):1178-1189.[doi:10.11992/tis.202308026]
 JIN Yifan,WANG Haitao,JIA Wei.Using palmprint lines for data enhancement of palmprint recognition based on deep learning[J].CAAI Transactions on Intelligent Systems,2024,19(5):1178-1189.[doi:10.11992/tis.202308026]
点击复制

使用掌纹线对基于深度学习的掌纹识别进行数据增强

参考文献/References:
[1] 刘琦, 于汉超, 蔡剑成, 等. 大数据生物特征识别技术研究进展[J]. 科技导报, 2021, 39(19): 74-82.
LIU Qi, YU Hanchao, CAI Jiancheng, et al. Research progress and trend of big-data based biometrics[J]. Science & technology review, 2021, 39(19): 74-82.
[2] 李志远. 人脸识别技术研究现状综述[J]. 电子技术与软件工程, 2020(13): 106-107.
LI Zhiyuan. Summary of the research status of face recognition technology[J]. Electronic technology & software engineering, 2020(13): 106-107.
[3] 钟德星, 朱劲松, 杜学峰. 掌纹识别研究进展综述[J]. 模式识别与人工智能, 2019, 32(5): 436-445.
ZHONG Dexing, ZHU Jinsong, DU Xuefeng. Progress of palmprint recognition: a review[J]. Pattern recognition and artificial intelligence, 2019, 32(5): 436-445.
[4] 孙哲南, 谭铁牛. 虹膜识别研究与应用综述[J]. 自动化博览, 2005, 22(2): 25-26.
SUN Zhenan, TAN Tieniu. Research and applications overview of iris recognition[J]. Automation panorama, 2005, 22(2): 25-26.
[5] 岳峰, 左旺孟, 张大鹏. 掌纹识别算法综述[J]. 自动化学报, 2010, 36(3): 353-365.
YUE Feng, ZUO Wangmeng, ZHANG Dapeng. Survey of palmprint recognition algorithms[J]. Acta automatica sinica, 2010, 36(3): 353-365.
[6] 陈晓蔓, 贾伟, 李书杰, 等. 融合全局和局部方向特征的掌纹识别方法[J]. 图学学报, 2019, 40(4): 671-680.
CHEN Xiaoman, JIA Wei, LI Shujie, et al. Palmprint recognition based on fusing global and local directional features[J]. Journal of graphics, 2019, 40(4): 671-680.
[7] HUANG Deshuang, JIA Wei, ZHANG D. Palmprint verification based on principal lines[J]. Pattern recognition, 2008, 41(4): 1316-1328.
[8] JIA Wei, ZHU Yihai, LIU Lingfeng, et al. Fast palmprint retrieval using principal lines[C]//2009 IEEE International Conference on Systems, Man and Cybernetics. San Antonio: IEEE, 2009: 4118-4123.
[9] LI Cong, LIU Fu, ZHANG Yongzhong. A principal palm-line extraction method for palmprint images based on diversity and contrast[C]//2010 3rd International Congress on Image and Signal Processing. Yantai: IEEE, 2010: 1772-1777.
[10] YUAN Weiqi, LIN Sen, TONG Haibin, et al. A detection method of palmprint principal lines based on local minimum gray value and line following[C]//2011 International Conference on Hand-Based Biometrics. Hong Kong: IEEE, 2011: 1-5.
[11] ROTINWA-AKINBILE M O, AIBINU A M, SALAMI M J E. Palmprint recognition using principal lines characterization[C]//2011 First International Conference on Informatics and Computational Intelligence. Bandung: IEEE, 2011: 278-282.
[12] BIRADAR S. Personal identification using palmprint biometrics based on principal line approach[J]. International journal of advanced research in computer engineering & technology, 2013, 14(2): 750-754.
[13] WANG Yanxia, ZHAO Jianmin, SUN Guanghua, et al. Palm lines extraction using PCNN and image data field[C]//2013 First International Symposium on Future Information and Communication Technologies for Ubiquitous HealthCare. Jinhua: IEEE, 2013: 1-5.
[14] BRUNO A, CARMINETTI P, GENTILE V, et al. Palmprint principal lines extraction[C]//2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications. Rome: IEEE, 2014: 50-56.
[15] RAUT S D, HUMBE V T. An approach to boundary extraction of palm lines and vein pattern[J]. International journal of image, graphics and signal processing, 2014, 6(12): 47-52.
[16] LIU Dian, SUN Dongmei. Contactless palmprint recognition based on convolutional neural network[C]//2016 IEEE 13th International Conference on Signal Processing. Chengdu: IEEE, 2016: 1363-1367.
[17] OLDAL L G, KOVáCS A. Biometric authentication system based on hand geometry and palmprint features[C]//Proceedings of the International Conference on Image Processing and Vision Engineering. Virtual: SCITE, 2021: 58-65.
[18] FAN Yu, LI Jinxi, SONG Shaoying, et al. Palmprint phenotype feature extraction and classification based on deep learning[J]. Phenomics, 2022, 2(4): 219-229.
[19] 胡越, 罗东阳, 花奎, 等. 关于深度学习的综述与讨论[J]. 智能系统学报, 2019, 14(1): 1-19.
HU Yue, LUO Dongyang, HUA Kui, et al. Overview on deep learning[J]. CAAI transactions on intelligent systems, 2019, 14(1): 1-19.
[20] ZHANG Lin, CHENG Zaixi, SHEN Ying, et al. Palmprint and palmvein recognition based on DCNN and a new large-scale contactless palmvein dataset[J]. Symmetry, 2018, 10(4): 78.
[21] MICHELE A, COLIN V, SANTIKA D D. MobileNet convolutional neural networks and support vector machines for palmprint recognition[J]. Procedia computer science, 2019, 157: 110-117.
[22] GENOVESE A, PIURI V, PLATANIOTIS K N, et al. PalmNet: Gabor-PCA convolutional networks for touchless palmprint recognition[J]. IEEE transactions on information forensics and security, 2019, 14(12): 3160-3174.
[23] ZHONG Dexing, ZHU Jinsong. Centralized large margin cosine loss for open-set deep palmprint recognition[J]. IEEE transactions on circuits and systems for video technology, 2020, 30(6): 1559-1568.
[24] MATKOWSKI W M, CHAI Tingting, KONG A W K. Palmprint recognition in uncontrolled and uncooperative environment[J]. IEEE transactions on information forensics and security, 2019, 15: 1601-1615.
[25] ZHAO Shuping, ZHANG B. Deep discriminative representation for generic palmprint recognition[J]. Pattern recognition, 2020, 98: 107071.
[26] ZHAO Shuping, ZHANG B. Joint constrained least-square regression with deep convolutional feature for palmprint recognition[J]. IEEE transactions on systems, man, and cybernetics: systems, 2022, 52(1): 511-522.
[27] ZHAO Shuping, ZHANG B, PHILIP CHEN C L. Joint deep convolutional feature representation for hyperspectral palmprint recognition[J]. Information sciences, 2019, 489: 167-181.
[28] JIA Wei, REN Qiang, ZHAO Yang, et al. EEPNet: an efficient and effective convolutional neural network for palmprint recognition[J]. Pattern recognition letters, 2022, 159: 140-149.
[29] SAMAI D, BENSID K, MERAOUMIA A, et al. 2D and 3D palmprint recognition using deep learning method[C]//2018 3rd International Conference on Pattern Analysis and Intelligent Systems. Tebessa: IEEE, 2018: 1-6.
[30] CHAA M, AKHTAR Z, ATTIA A. 3D palmprint recognition using unsupervised convolutional deep learning network and SVM classifier[J]. IET image processing, 2019, 13(5): 736-745.
[31] 冯晓硕, 沈樾, 王冬琦. 基于图像的数据增强方法发展现状综述[J]. 计算机科学与应用, 2021, 11(2): 370-382.
FENG Xiaoshuo, SHEN Yue, WANG Dongqi. A Survey on the Development of Image Data Augmentation[J]. Computer science and application, 2021, 11(2): 370-382.
[32] 王海纶, 李书杰, 贾伟, 等. 卷积神经网络在掌纹识别中的性能评估[J]. 中国图象图形学报, 2019, 24(8): 1231-1248.
WANG Hailun, LI Shujie, JIA Wei, et al. Performance evaluation of convolutional neural network in palmprint recognition[J]. Journal of image and graphics, 2019, 24(8): 1231-1248.
[33] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251.
ZHOU Feiyan, JIN Linpeng, DONG Jun. Review of convolutional neural network[J]. Chinese journal of computers, 2017, 40(6): 1229-1251.
[34] JIA Wei, HUANG Deshuang, ZHANG D. Palmprint verification based on robust line orientation code[J]. Pattern recognition, 2008, 41(5): 1504-1513.
[35] ZHONG Zilong, LI Ying, MA Lingfei, et al. Spectral–spatial transformer network for hyperspectral image classification: a factorized architecture search framework[J]. IEEE transactions on geoscience and remote sensing, 2022, 60: 5514715.
[36] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[37] ZHAO Kai, SHEN Lei, ZHANG Yingyi, et al. BézierPalm: A free lunch for palmprint recognition[C]//Lecture Notes in Computer Science. Cham: Springer, 2022: 19-36.
[38] LUO Yuetong, ZHAO Lanying, ZHANG B, et al. Local line directional pattern for palmprint recognition[J]. Pattern recognition, 2016, 50: 26-44.
[39] KONG A W K, ZHANG D. Competitive coding scheme for palmprint verification[C]//Proceedings of the 17th International Conference on Pattern Recognition. Cambridge: IEEE, 2004: 520-523.
[40] LI Mengwen, WANG Huabin, LIU Huaiyu, et al. Palmprint recognition based on the line feature local tri-directional patterns[J]. IET biometrics, 2022, 11(6): 570-580.
[41] ZHANG D, KONG W K, YOU J, et al. Online palmprint identification[J]. IEEE transactions on pattern analysis and machine intelligence, 2003, 25(9): 1041-1050.
[42] ZHANG Lin, LI Lida, YANG Anqi, et al. Towards contactless palmprint recognition: a novel device, a new benchmark, and a collaborative representation based identification approach[J]. Pattern recognition, 2017, 69: 199-212.
[43] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[44] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261-2269.
[45] HOWARD A, SANDLER M, CHEN Bo, et al. Searching for MobileNetV3[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1314-1324.
[46] CUBUK E D, ZOPH B, SHLENS J, et al. Randaugment: practical automated data augmentation with a reduced search space[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 3008-3017.
[47] ZHANG Changbin, JIANG Pengtao, HOU Qibin, et al. Delving deep into label smoothing[J]. IEEE transactions on image processing, 2021, 30: 5984-5996.
[48] ZHUANG Zhenxun, LIU Mingrui, CUTKOSKV A, et al. Understanding adamw through proximal methods and scale-freeness[J]. Transactions on machine learning research, 2022: 1-29.
[49] HE Tong, ZHANG Zhi, ZHANG Hang, et al. Bag of tricks for image classification with convolutional neural networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 558-567.
相似文献/References:
[1]颜廷秦,周昌雄.二维EMD分解提高PCA掌纹识别率[J].智能系统学报,2013,8(4):377.[doi:10.3969/j.issn.1673-4785.201211002]
 YAN Tingqin,ZHOU Changxiong.The research of improving PCA recognition rate of palmprints with BEMD[J].CAAI Transactions on Intelligent Systems,2013,8():377.[doi:10.3969/j.issn.1673-4785.201211002]
[2]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[3]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[4]陈阳,覃鸿,李卫军,等.仿生模式识别技术研究与应用进展[J].智能系统学报,2016,11(1):1.[doi:10.11992/tis.201506011]
 CHEN Yang,QIN Hong,LI Weijun,et al.Progress in research and application of biomimetic pattern recognition technology[J].CAAI Transactions on Intelligent Systems,2016,11():1.[doi:10.11992/tis.201506011]
[5]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[6]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[7]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[8]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[9]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[10]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[11]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[12]王闪闪,巩长庆,秦华锋,等.基于深度学习的K近邻图迭代静脉识别算法研究[J].智能系统学报,2024,19(5):1149.[doi:10.11992/tis.202307009]
 WANG Shanshan,GONG Changqing,QIN Huafeng,et al.Vein recognition algorithm combining K-nearest neighbor and graph iterative based on deep learning[J].CAAI Transactions on Intelligent Systems,2024,19():1149.[doi:10.11992/tis.202307009]
[13]林孙旗,徐家梦,郑瑜杰,等.面向掌纹掌静脉识别网络轻量化的非对称双模态融合方法[J].智能系统学报,2024,19(5):1190.[doi:10.11992/tis.202212031]
 LIN Sunqi,XU Jiameng,ZHENG Yujie,et al.An asymmetric bimodal fusion method for lightweight palm print and palm vein recognition network[J].CAAI Transactions on Intelligent Systems,2024,19():1190.[doi:10.11992/tis.202212031]

备注/Memo

收稿日期:2023-8-19。
基金项目:国家自然科学基金项目(62076086).
作者简介:金怡凡,硕士研究生,主要研究方向为掌纹识别、掌纹掌静脉图像质量评估和质量增强。E-mail:2021111008@mail.hfut.edu.cn;王海涛,硕士研究生,主要研究方向为掌纹识别、计算机视觉和深度学习。E-mail:2020171079@mail.hfut.edu.cn;贾伟,教授,博士生导师,主要研究方向为人工智能、计算机视觉、图像处理、模式识别、生物特征识别。主持国家自然科学基金项目4项,获得授权发明专利7项,发表学术论文近百篇。E-mail:jiawei@hfut.edu.cn。
通讯作者:贾伟. E-mail:jiawei@hfut.edu.cn

更新日期/Last Update: 2024-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com