[1]刘亚奇,蔡强,石磊,等.尺度可变有约束图像拼接检测与定位及其对抗优化[J].智能系统学报,2024,19(6):1479-1491.[doi:10.11992/tis.202307011]
 LIU Yaqi,CAI Qiang,SHI Lei,et al.Scalable constrained image splicing detection and localization with adversarial optimizing[J].CAAI Transactions on Intelligent Systems,2024,19(6):1479-1491.[doi:10.11992/tis.202307011]
点击复制

尺度可变有约束图像拼接检测与定位及其对抗优化

参考文献/References:
[1] VERDOLIVA L. Media forensics and DeepFakes: an overview[J]. IEEE journal of selected topics in signal processing, 2020, 14(5): 910-932.
[2] COZZOLINO D, VERDOLIVA L. Noiseprint: a CNN-based camera model fingerprint[J]. IEEE transactions on information forensics and security, 2020, 15: 144-159.
[3] WANG Junke, WU Zuxuan, OUYANG Wenhao, et al. M2TR: multi-modal multi-scale transformers for deepfake detection[C]//Proceedings of the 2022 International Conference on Multimedia Retrieval. Newark: ACM, 2022: 615-623.
[4] LIU Yaqi, XIA Chao, ZHU Xiaobin, et al. Two-stage copy-move forgery detection with self deep matching and proposal SuperGlue[J]. IEEE transactions on image processing, 2022, 31: 541-555.
[5] ZHANG Yulan, ZHU Guopu, WU Ligang, et al. Multi-task SE-network for image splicing localization[J]. IEEE transactions on circuits and systems for video technology, 2022, 32(7): 4828-4840.
[6] BAMMEY Q, VON GIOI R G, MOREL J M. An adaptive neural network for unsupervised mosaic consistency analysis in image forensics[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 14182-14192.
[7] LIU Yaqi, GUAN Qingxiao, ZHAO Xianfeng, et al. Image Forgery Localization based on Multi-Scale Convolutional Neural Networks[C]//Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. Innsbruck: ACM, 2018: 85-90.
[8] PENG Bo, WANG Wei, DONG Jing, et al. Image forensics based on planar contact constraints of 3D objects[J]. IEEE transactions on information forensics and security, 2018, 13(2): 377-392.
[9] DAS S, ISLAM M S, AMIN M R. GCA-net: utilizing gated context attention for improving image forgery localization and detection[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New Orleans: IEEE, 2022: 81-90.
[10] WANG Junke, WU Zuxuan, CHEN Jingjing, et al. ObjectFormer for image manipulation detection and localization[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 2354-2363.
[11] LIU Yaqi, LYU Binbin, JIN Xin, et al. TBFormer: two-branch transformer for image forgery localization[J]. IEEE signal processing letters, 2023, 30: 623-627.
[12] WU Yue, ABD-ALMAGEED W, NATARAJAN P. Deep matching and validation network: an end-to-end solution to constrained image splicing localization and detection[C]//Proceedings of the 25th ACM international conference on Multimedia. Mountain View: ACM, 2017: 1480-1502.
[13] LIU Yaqi, ZHU Xiaobin, ZHAO Xianfeng, et al. Adversarial learning for constrained image splicing detection and localization based on atrous convolution[J]. IEEE transactions on information forensics and security, 2019, 14(10): 2551-2566.
[14] LIU Yaqi, ZHAO Xianfeng. Constrained image splicing detection and localization with attention-aware encoder-decoder and atrous convolution[J]. IEEE access, 2020, 8: 6729-6741.
[15] MOREIRA D, BHARATI A, BROGAN J, et al. Image provenance analysis at scale[J]. IEEE transactions on image processing, 2018, 27(12): 6109-6123.
[16] YE Kui, DONG Jing, WANG Wei, et al. Feature pyramid deep matching and localization network for image forensics[C]//2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Honolulu: IEEE, 2018: 1796-1802.
[17] WAN Ji, WANG Dayong, HOI S C H, et al. Deep learning for content-based image retrieval: a comprehensive study[C]//Proceedings of the 22nd ACM international conference on Multimedia. Orlando: ACM, 2014: 157-166.
[18] PINTO A, MOREIRA D, BHARATI A, et al. Provenance filtering for multimedia phylogeny[C]//2017 IEEE International Conference on Image Processing. Beijing: IEEE, 2017: 1502-1506.
[19] LI Yuanman, ZHOU Jiantao. Fast and effective image copy-move forgery detection via hierarchical feature point matching[J]. IEEE transactions on information forensics and security, 2019, 14(5): 1307-1322.
[20] 王凯诚, 鲁华祥, 龚国良, 等. 基于注意力机制的显著性目标检测方法[J]. 智能系统学报, 2020, 15(5): 956-963.
WANG Kaicheng, LU Huaxiang, GONG Guoliang, et al. Salient object detection method based on the attention mechanism[J]. CAAI transactions on intelligent systems, 2020, 15(5): 956-963.
[21] 李涛, 高志刚, 管晟媛, 等. 结合全局注意力机制的实时语义分割网络[J]. 智能系统学报, 2023, 18(2): 282-292.
LI Tao, GAO Zhigang, GUAN Shengyuan, et al. Global attention mechanism with real-time semantic segmentation network[J]. CAAI transactions on intelligent systems, 2023, 18(2): 282-292.
[22] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1800-1807.
[23] WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539.
[24] CHRISTLEIN V, RIESS C, JORDAN J, et al. An evaluation of popular copy-move forgery detection approaches[J]. IEEE transactions on information forensics and security, 2012, 7(6): 1841-1854.
[25] LUO Weiqi, HUANG Jiwu, QIU Guoping. Robust detection of region-duplication forgery in digital image[C]//18th International Conference on Pattern Recognition. Hong Kong: IEEE, 2006: 746-749.
[26] RYU S J, LEE M J, LEE H K. Detection of copy-rotate-move forgery using zernike moments[M]//Lecture Notes in Computer Science. Berlin: Springer Berlin Heidelberg, 2010: 51-65.
[27] COZZOLINO D, POGGI G, VERDOLIVA L. Efficient dense-field copy-move forgery detection[J]. IEEE transactions on information forensics and security, 2015, 10(11): 2284-2297.

备注/Memo

收稿日期:2023-7-12。
基金项目:中央高校基本科研业务费资金项目(3282023016);国家自然科学基金项目(62102010, 62002003);北京工商大学食品安全大数据技术北京市重点实验室开放课题(BTBD-2022KF02).
作者简介:刘亚奇,助理研究员,博士,主要研究领域为多媒体安全、图像取证、人工智能和模式识别。E-mail:liuyaqi@besti.edu.cn;蔡强,教授,博士,主要研究方向为计算机图形学、计算几何、科学可视化、智能信息处理。发表学术论文90余篇。E-mail:caiq@btbu.edu.cn;石磊,副研究员,博士,中国人工智能学会智能服务专委会委员,主要研究方向为智能信息处理、大数据分析与挖掘、社交网络搜索及人工智能。E-mail:leiky_shi@cuc.edu.cn。
通讯作者:蔡强. E-mail:caiq@btbu.edu.cn

更新日期/Last Update: 2024-11-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com