[1]高媛,石润华,刘长杰.自适应差分隐私的联邦学习方案[J].智能系统学报,2024,19(6):1395-1406.[doi:10.11992/tis.202306052]
 GAO Yuan,SHI Runhua,LIU Changjie.Federated learning scheme with adaptive differential privacy[J].CAAI Transactions on Intelligent Systems,2024,19(6):1395-1406.[doi:10.11992/tis.202306052]
点击复制

自适应差分隐私的联邦学习方案

参考文献/References:
[1] 徐树良, 王俊红. 结合无监督学习的数据流分类算法[J]. 模式识别与人工智能, 2016, 29(7): 665-672.
XU Shuliang, WANG Junhong. Classification algorithm combined with unsupervised learning for data stream[J]. Pattern recognition and artificial intelligence, 2016, 29(7): 665-672.
[2] ALWARAFY A, AL-THELAYA K A, ABDALLAH M, et al. A survey on security and privacy issues in edge-computing-assisted Internet of Things[J]. IEEE Internet of Things journal, 2021, 8(6): 4004-4022.
[3] VOIGT P, VON DEM BUSSCHE A. The EU general data protection regulation (GDPR)[M]. Cham: Springer International Publishing, 2017.
[4] PHONG L T, AONO Y, HAYASHI T, et al. Privacy-preserving deep learning via additively homomorphic encryption[J]. IEEE transactions on information forensics and security, 2018, 13(5): 1333-1345.
[5] FREDRIKSON M, JHA S, RISTENPART T. Model inversion attacks that exploit confidence information and basic countermeasures[C]//Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. Denver: ACM, 2015: 1322-1333.
[6] NASR M, SHOKRI R, HOUMANSADR A. Comprehensive privacy analysis of deep learning: passive and active white-box inference attacks against centralized and federated learning[C]//2019 IEEE Symposium on Security and Privacy. San Francisco: IEEE, 2019: 739-753.
[7] GEYER R C, KLEIN T, NABI M. Differentially private federated learning: a client level perspective[EB/OL]. (2017-12-20) [2021-01-01]. http://arxiv.org/abs/1712.07557.
[8] WEI Kang, LI Jun, DING Ming, et al. Federated learning with differential privacy: algorithms and performance analysis[J]. IEEE transactions on information forensics and security, 2020, 15: 3454-3469.
[9] LI Yiwei, CHANG T H, CHI C Y. Secure federated averaging algorithm with differential privacy[C]//2020 IEEE 30th International Workshop on Machine Learning for Signal Processing. Espoo: IEEE, 2020: 1-6.
[10] MCMAHAN H B, RAMAGE D, TALWAR K, et al. Learning differentially private recurrent language models[EB/OL]. (2017-10-18) [2021-01-01]. http://arxiv.org/abs/1710.06963.
[11] ZHAO Yang, ZHAO Jun, YANG Mengmeng, et al. Local differential privacy-based federated learning for Internet of Things[J]. IEEE internet of things journal, 2021, 8(11): 8836-8853.
[12] YANG Jia, FU Cai, LIU Xiaoyang, et al. Recommendations in smart devices using federated tensor learning[J]. IEEE internet of things journal, 2022, 9(11): 8425-8437.
[13] DWORK C, ROTH A. The algorithmic foundations of differential privacy[J]. Foundations and trends? in theoretical computer science, 2013, 9(3/4): 211-407.
[14] 梁文雅, 刘波, 林伟伟, 等. 联邦学习激励机制研究综述[J]. 计算机科学, 2022, 49(12): 46-52.
LIANG Wenya, LIU Bo, LIN Weiwei, et al. Survey of incentive mechanism for federated learning[J]. Computer science, 2022, 49(12): 46-52.
[15] SHOKRI R, SHMATIKOV V. Privacy-preserving deep learning[C]//2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton). Monticello: IEEE, 2015: 909-910.
[16] DWORK C, LEI Jing. Differential privacy and robust statistics[C]//Proceedings of the forty-first annual ACM symposium on Theory of computing. Bethesda: ACM, 2009: 371-380.
[17] ABADI M, CHU A, GOODFELLOW I, et al. Deep learning with differential privacy[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. Vienna: ACM, 2016: 308-318.
[18] PHAN N, WANG Yue, WU Xintao, et al. Differential privacy preservation for deep auto-encoders: an application of human behavior prediction[J]. Proceedings of the AAAI conference on artificial intelligence, 2016, 30(1): 3175-3183.
[19] BENGIO Y. Learning deep architectures for AI[J]. Foundations and trends? in machine learning, 2009, 2(1): 1-127.
[20] PHAN N, WU Xintao, HU Han, et al. Adaptive Laplace mechanism: differential privacy preservation in deep learning[C]//2017 IEEE International Conference on Data Mining. New Orleans: IEEE, 2017: 385-394.
[21] LEE J, KIFER D. Concentrated differentially private gradient descent with adaptive per-iteration privacy budget[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018: 1656-1665.
[22] MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[EB/OL]. (2016-02-17)[2021-01-01] http://arxiv.org/abs/1602.05629.
[23] 张兴, 陈昊. 差分隐私的高维数据发布研究综述[J]. 智能系统学报, 2021, 16(6): 989-998.
ZHANG Xing, CHEN Hao. A research review of high-dimensional data publishing based on a differential privacy model[J]. CAAI transactions on intelligent systems, 2021, 16(6): 989-998.
[24] ZHANG Jun, XIAO Xiaokui, YANG Yin, et al. PrivGene: differentially private model fitting using genetic algorithms[C]//Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2013: 665-676.
[25] TALWAR K, THAKURTA A, ZHANG Li. Nearly-optimal private LASSO[J]. Advances in neural information processing systems, 2015: 3025-3033.
[26] SUN Peng, CHE Haoxuan, WANG Zhibo, et al. Pain-FL: personalized privacy-preserving incentive for federated learning[J]. IEEE journal on selected areas in communications, 2021, 39(12): 3805-3820.
[27] BUN M, STEINKE T. Concentrated differential privacy: simplifications, extensions, and lower bounds[M]//Lecture Notes in Computer Science. Berlin: Springer Berlin Heidelberg, 2016: 635-658.
[28] MAHAWAGA ARACHCHIGE P C, BERTOK P, et al. Local differential privacy for deep learning[J]. IEEE internet of things journal, 2020, 7(7): 5827-5842.
相似文献/References:
[1]王健宗,肖京,朱星华,等.联邦推荐系统的协同过滤冷启动解决方法[J].智能系统学报,2021,16(1):178.[doi:10.11992/tis.202009032]
 WANG Jianzong,XIAO Jing,ZHU Xinghua,et al.Cold starts in collaborative filtering for federated recommender systems[J].CAAI Transactions on Intelligent Systems,2021,16():178.[doi:10.11992/tis.202009032]
[2]张兴,陈昊.差分隐私的高维数据发布研究综述[J].智能系统学报,2021,16(6):989.[doi:10.11992/tis.202104023]
 ZHANG Xing,CHEN Hao.A research review of high-dimensional data publishing based on a differential privacy model[J].CAAI Transactions on Intelligent Systems,2021,16():989.[doi:10.11992/tis.202104023]
[3]窦勇敢,袁晓彤.基于隐式随机梯度下降优化的联邦学习[J].智能系统学报,2022,17(3):488.[doi:10.11992/tis.202106029]
 DOU Yonggan,YUAN Xiaotong.Federated learning with implicit stochastic gradient descent optimization[J].CAAI Transactions on Intelligent Systems,2022,17():488.[doi:10.11992/tis.202106029]
[4]陈涛,谢在鹏,屈志昊.基于动态阈值增强原型网络的联邦半监督学习模型[J].智能系统学报,2024,19(3):534.[doi:10.11992/tis.202311015]
 CHEN Tao,XIE Zaipeng,QU Zhihao.Federated semi-supervised learning model based on dynamic threshold enhanced prototype network[J].CAAI Transactions on Intelligent Systems,2024,19():534.[doi:10.11992/tis.202311015]
[5]陈志鹏,张勇,高海荣,等.隐私保护下融合联邦学习和LSTM的少数据综合能源多元负荷预测[J].智能系统学报,2024,19(3):565.[doi:10.11992/tis.202208049]
 CHEN Zhipeng,ZHANG Yong,GAO Hairong,et al.Integrated energy multivariate load forecasting combining federated learning with LSTM in privacy-protected and low-data environments[J].CAAI Transactions on Intelligent Systems,2024,19():565.[doi:10.11992/tis.202208049]
[6]赵泽华,梁美玉,薛哲,等.基于数据质量评估的高效强化联邦学习节点动态采样优化[J].智能系统学报,2024,19(6):1552.[doi:10.11992/tis.202305054]
 ZHAO Zehua,LIANG Meiyu,XUE Zhe,et al.Client dynamic sampling optimization of efficient reinforcement federated learning based on data quality assessment[J].CAAI Transactions on Intelligent Systems,2024,19():1552.[doi:10.11992/tis.202305054]

备注/Memo

收稿日期:2023-6-30。
基金项目:国家自然科学基金面上项目(61772001).
作者简介:高媛,硕士研究生,主要研究方向为差分隐私、联邦学习。E-mail:gaoyuanerer@163.com;石润华,教授,博士生导师,博士,主要研究方向为经典\量子密码、量子计算、大数据与隐私保护。主持国家自然科学基金面上项目2项。发表学术论文100余篇。申请发明专利40项,其中已授权30余项。E-mail:rhshi@ncepu.edu.cn;刘长杰,硕士,主要研究方向为联邦学习、入侵检测。E-mail:lcj@ncepu.cn。
通讯作者:石润华. E-mail:rhshi@ncepu.edu.cn

更新日期/Last Update: 2024-11-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com